49 research outputs found

    Biomass Processing for Biofuels, Bioenergy and Chemicals

    Get PDF
    Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production

    Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery

    Get PDF
    A method to recover both Br and Br-free plastic from brominated flame retardant high impact polystyrene (HIPS-Br) was proposed. HIPS-Br containing 15% Br was treated in autoclave at 280℃ using water or KOH solution of various amounts and concentrations. Hydrothermal treatment (30 ml water) leads to 90% debromination of 1 g HIPS-Br but plastic is strongly degraded and could not be recovered. previous termAlkalinenext term hydrothermal treatment (45 ml or 60 ml KOH 1 M) showed similar debromination for up to 12 g HIPS-Br and plastic was recovered as pellets with molecular weight distribution close to that of the initial material. Debromination occurs at melt plastic/KOH solution interface when liquid/vapour equilibrium is attained inside autoclave (280℃ and 7 MPa in our experimental conditions) and depends on the plastic amount/KOH volume ratio. The antimony oxide synergist from HIPS-Br remains in recovered plastic during treatment. A pictorial imagination of the proposed debromination process is presented.</p

    Thermoanalytical characterization and catalytic conversion of de-oiled micro algae and jatropha seed cake

    Get PDF
    The thermal decomposition of the by-products of the biodiesel process was studied by thermoanalytical methods. De-oiled algae cake and jatropha seed de-oiled cake were pyrolyzed and the catalytic effects of silica supported iron catalysts (Fe/FSM-16 and Fe/SBA-15) and magnetite (Fe3O4) were tested. The evolution profiles of the decomposition products as well as the thermal stability of the samples were determined by thermogravimetry/mass spectrometry (TG/MS). The formation of the volatile products was monitored by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The composition and the amounts of the gaseous products changed significantly in the presence of the silica supported iron catalysts: the yield of hydrogen and carbon monoxide considerably increased above the decomposition temperature of 400 °C. Both silica supported iron catalysts had important effects on the yield of the products originating from carbohydrates and lignins. The formation of anhydrosugars and phenolic compounds was hindered, while the evolution of aromatic and aliphatic hydrocarbons was enhanced. Fe/FSM-16 proved to be more efficient than Fe/SBA-15 and Fe3O4 catalysts. The thermal decomposition of the protein content of the samples resulted in the formation of 2,5 diketopiperazines and smaller molecules (e.g., ammonia). The silica supported iron catalysts had a special effect: their presence promoted the reaction of fatty acid esters and ammonia resulting in the formation of alkyl nitriles during the thermal decomposition

    Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass

    No full text
    Fast pyrolysis is a promising thermochemical method of producing renewable fuels and chemicals from biomass and waste feedstocks. There is much interest in optimising the choice of feedstock pre-treatments, reaction conditions, reactor designs, and catalysts as well as product upgrading steps to improve the techno-economic feasibility of the process. This article summarizes the current state-of-art in thermal and catalytic fast pyrolysis and outlines the major considerations for process development. The status of process technologies and development efforts on thermal and catalytic fast pyrolysis are reviewed, with a focus on efforts producing bio-oil for use in manufacturing transport fuels or fuel blends as the final product. The leading thermal pyrolysis processes, which use circulating, bubbling, auger screw and rotating cone reactor technologies, are reviewed alongside recent research and development activities on catalytic fast pyrolysis. This review finds that several technologies for thermal fast pyrolysis are operating at commercial scale, while integrated process development efforts are just starting to focus on applying catalytic fast pyrolysis at pilot scale. Processes for catalytic fast pyrolysis, either via in-situ or ex-situ upgrading of the bio-oil vapours is an area currently receiving significant research and development interest. This processing route may enable the production of partially upgraded bio-crudes which are suitable for processing to final fuel products in centralized bio-refineries or for co-processing in petroleum refineries. However, there remains a lot of fundamental and laboratory work to be done to develop deeper understanding of the processes, so that the catalysts and reaction conditions can be optimized. New combinations of unit operations and possibly novel reactors will likely be required to economically convert biomass feedstocks into partially upgraded bio-crudes. Techno-economic assessment shows that bio-fuels from fast pyrolysis may be competitive with petroleum fuels in future, however there are currently only a handful of plants operating commercially

    Catalytic hydrothermal treatment of pine wood biomass: Effect of RbOH and CsOH on product distribution

    No full text
    Low-temperature hydrothermal treatment of pine wood biomass was performed in the presence of RbOH and CsOH catalysts (280 °C for 15 min). The effect of the catalysts on the distribution of products and the volatility distribution of oxygenated hydrocarbons was studied in detail. Oxygenated hydrocarbons were extracted from the liquid and solid portions and analysed individually by gas chromatography/mass spectrometry. Catalytic (RbOH and CsOH) hydrothermal treatment of wood biomass produced mainly phenolic compounds and benzenediol derivatives. The use of RbOH and CsOH catalysts hindered the formation of char and favoured the formation of oil products, as observed previously for various other base catalysts. The volatility distribution of hydrocarbons (ether extract) was characterised by carbon-normal paraffin (C-NP) gram and it was found that the oxygenated hydrocarbons from all runs, including thermal, were distributed in the boiling point region of n-C6 to n-C17. © 2005 Society of Chemical Industry

    Advances in the thermo-chemical production of hydrogen from biomass and residual wastes : summary of recent techno-economic analyses

    No full text
    This article outlines the prospects and challenges of hydrogen production from biomass and residual wastes, such as municipal solid waste. Recent advances in gasification and pyrolysis followed by reforming are discussed. The review finds that the thermal efficiency of hydrogen from gasification is ~50%. The levelized cost of hydrogen (LCOH) from biomass varies from ~2.3–5.2 USD/kg at feedstock processing scales of 10 MWth to ~2.8–3.4 USD/kg at scales above 250 MWth. Preliminary estimates are that the LCOH from residual wastes could be in the range of ~1.4–4.8 USD/kg, depending upon the waste gate fee and project scale. The main barriers to development of waste to hydrogen projects include: waste pre-treatment, technology maturity, syngas conditioning, the market for clean hydrogen, policies to incentivize pioneer projects and technology competitiveness. The main opportunity is to produce low cost clean hydrogen, which is competitive with alternative production routes. © 2019 Elsevier Lt
    corecore