11,285 research outputs found
Assessment of Knowledge and Practices of Referring Private Practitioners Regarding Revised National Tuberculosis Control Programme in Nagpur City - A Cross Sectional Study
Objectives: To assess knowledge, diagnostic and treatment practices of the referring private practitioners of Nagpur city regarding Revised National Tuberculosis Control Programme (RNTCP). Methods: The study involved interview of 103 Private Practitioners (PPs) of Nagpur city. Knowledge of private practitioners was assessed based on questions related to diagnosis, categorization, treatment regimens & follow up. Practices of private practitioners were assessed based on which investigations and treatment regimen they advise & whether they offer supervised treatment. Their willingness to get involved in the programme was also recorded. Results: Only 49 (47.6%) private practitioners knew sputum smear examination as primary tool of diagnosis of TB. Only half, 52 (50.5%) of the private practitioners knew number of categories of tuberculosis correctly and 64 (62.1%) private practitioners did know how to categorize TB patients. Chest X-ray and Mantoux test (38.5%) was mainly used by the PPs for TB diagnosis. 42.7% of PPs were prescribing treatment for TB and among them only 8 were prescribing as per RNTCP guidelines and just one provided treatment under direct observation. Different combination of HRZE and HRZES was prescribed for variable period ranges from 2-8 months. And only 12 (11.6%) private practitioners expressed their willingness to get involved in RNTCP for TB control. Conclusion: There is lack of adequate knowledge, diagnostic and treatment practice among PPs as per RNTCP guidelines and further encouragement is required for their participation in the programme
Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions
Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one
full Saturn rotation (10.7 hr) at each epoch. We report here the first
observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk,
which is seen in direct response to an M6-class flare emanating from a sunspot
that was clearly visible from both Saturn and Earth. Saturn's disk X-ray
emissions are found to be variable on time scales of hours to weeks to months,
and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's
polar (auroral) region have characteristics similar to those from its disk.
This report, combined with earlier studies, establishes that disk X-ray
emissions of the giant planets Saturn and Jupiter are directly regulated by
processes happening on the Sun. We suggest that these emissions could be
monitored to study X-ray flaring from solar active regions when they are on the
far side and not visible to Near-Earth space weather satellites.Comment: Total 12 pages including 4 figure
Electrochemical incineration of wastes
The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes
Cytosolic Glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease
A new paradigm for Niemann-Pick C disease is presented where lysosomal storage leads to a deficit in cytoplasmic glucosylceramide (GlcCer) where it performs important functions.
Previously it had been reported that Gaucher cells have defective endolysosomal pH. GlcCer also accumulates in Niemann-Pick C disease and also shows this defect.
Niemann-Pick C cells were found to have reduced cytoplasmic glucosylceramide (GlcCer) transport.
Inhibiting cytoplasmic glucocerebrosidase (GBA2), increased GlcCer, decreased endolysosomal pH in normal cells, reversed increases in endolysosomal pH and restored disrupted BODIPY-LacCer trafficking and increased expression of vATPase a subunit in Niemann-Pick C fibroblasts.
The results are consistent with a model where both endolysosomal pH and Golgi targeting of BODIPY-LacCer are dependent on adequate levels of cytosolic GlcCer which are reduced in NPC disease.
This work consequently suggests GBA2 and vATPase as new therapeutic targets in Niemann-Pick C and related neurodegenerative diseases.
The work was in collaboration with colleagues in the Netherlands and Leicester University.
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Niemann-Pick type C disease (NPCD) is a neurodegenerative disease associated with increases in cellular cholesterol and glycolipids and most commonly caused by defective NPC1, a late endosomal protein. Using ratiometric probes we find that NPCD cells show increased endolysosomal pH. In addition U18666A, an inhibitor of NPC1, was found to increase endolysosomal pH, and the number, size and heterogeneity of endolysosomal vesicles. NPCD fibroblasts and cells treated with U18666A also show disrupted targeting of fluorescent lipid BODIPY-LacCer to high pH vesicles. Inhibiting non-lysosomal glucocerebrosidase (GBA2) reversed increases in endolysosomal pH and restored disrupted BODIPY-LacCer trafficking in NPCD fibroblasts. GBA2 KO cells also show decreased endolysosomal pH. NPCD fibroblasts also show increased expression of a key subunit of the lysosomal proton pump vATPase on GBA2 inhibition. The results are consistent with a model where both endolysosomal pH and Golgi targeting of BODIPY-LacCer are dependent on adequate levels of cytosolic-facing GlcCer, which are reduced in NPC disease
Characterization of volatile secondary metabolites from Trichoderma asperellum
Many Trichoderma isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. The production of such compounds varies according to the strain. In the present study, volatile secondary metabolites from the culture filtrate of Trichoderma asperellum strain were characterized using Gas chromatography-Mass spectrometry (GC-MS). Results of GC-MS detected 43 secondary metabolites in the T. asperellum strain including many important volatile secondary metabolites such as 1,2-Benzenedicarboxylic acid, 2-butoxy-2-oxoethyl butyl ester (peak area-3.59%), 1,2-Benzenedicarboxylic acid dibutyl ester (peak area-2.02 %), 2H-Pyran-2-one (peak area-66.63 %), palmitic acid (peak area-2.86 %), several phenolic isomers, methyl cyclohexane etc., all reportedly having effective pesticidal activity. The results indicated that these secondary metabolites could be useful for biological control applications of T. asperellum strain against diverse plant pathogens
Spatial heterogeneity in the radiogenic activity of the lunar interior: Inferences from CHACE and LLRI on Chandrayaan-1
In the past, clues on the potential radiogenic activity of the lunar interior
have been obtained from the isotopic composition of noble gases like Argon.
Excess Argon (40) relative to Argon (36), as compared to the solar wind
composition, is generally ascribed to the radiogenic activity of the lunar
interior. Almost all the previous estimates were based on, 'on-the-spot'
measurements from the landing sites. Relative concentration of the isotopes of
40Ar and 36Ar along a meridian by the Chandra's Altitudinal Composition
Explorer (CHACE) experiment, on the Moon Impact Probe (MIP) of India's first
mission to Moon, has independently yielded clues on the possible spatial
heterogeneity in the radiogenic activity of the lunar interior in addition to
providing indicative 'antiquity' of the lunar surface along the ground track
over the near side of the moon. These results are shown to broadly corroborate
the independent topography measurements by the Lunar Laser Ranging Instrument
(LLRI) in the main orbiter Chandrayaan-1. The unique combination of these
experiments provided high spatial resolution data while indicating the possible
close linkages between the lunar interior and the lunar ambience
Forbidden oxygen lines at various nucleocentric distances in comets
To study the formation of the [OI] lines - i.e., 5577 A (the green line),
6300 A and 6364 A (the two red lines) - in the coma of comets and to determine
the parent species of the oxygen atoms using the green to red-doublet emission
intensity ratio (G/R ratio) and the lines velocity widths. We acquired at the
ESO VLT high-resolution spectroscopic observations of comets C/2002 T7
(LINEAR), 73P-C/Schwassmann-Wachmann 3, 8P/Tuttle, and, 103P/Hartley 2 when
they were close to the Earth (< 0.6 au). Using the observed spectra, we
determined the intensities and the widths of the three [OI] lines. We have
spatially extracted the spectra in order to achieve the best possible
resolution of about 1-2", i.e., nucleocentric projected distances of 100 to 400
km depending on the geocentric distance of the comet. We have decontaminated
the [OI] green line from C2 lines blends. It is found that the observed G/R
ratio on all four comets varies as a function of nucleocentric projected
distance. This is mainly due to the collisional quenching of O(1S) and O(1D) by
water molecules in the inner coma. The observed green emission line width is
about 2.5 km/s and decreases as the distance from the nucleus increases which
can be explained by the varying contribution of CO2 to the O(1S) production in
the innermost coma. The photodissociation of CO2 molecules seems to produce
O(1S) closer to the nucleus while the water molecule forms all the O(1S) and
O(1D) atoms beyond 1000 km. Thus we conclude that the main parent species
producing O(1S) and O(1D) in the inner coma is not always the same. The
observations have been interpreted in the framework of the
coupled-chemistry-emission model of Bhardwaj & Raghuram (2012) and the upper
limits of CO2 relative abundances are derived from the observed G/R ratios.
Measuring the [OI] lines could indeed provide a new way to determine the CO2
relative abundance in comets.Comment: accepted for publication in A&A, the abstract is shortene
DataHub: Collaborative Data Science & Dataset Version Management at Scale
Relational databases have limited support for data collaboration, where teams
collaboratively curate and analyze large datasets. Inspired by software version
control systems like git, we propose (a) a dataset version control system,
giving users the ability to create, branch, merge, difference and search large,
divergent collections of datasets, and (b) a platform, DataHub, that gives
users the ability to perform collaborative data analysis building on this
version control system. We outline the challenges in providing dataset version
control at scale.Comment: 7 page
Irradiation of benzene molecules by ion-induced and light-induced intense fields
Benzene, with its sea of delocalized -electrons in the valence orbitals,
is identified as an example of a class of molecules that enable establishment
of the correspondence between intense ion-induced and laser-light-induced
fields in experiments that probe ionization dynamics in temporal regimes
spanning the attosecond and picosecond ranges.Comment: 4 ps figure
- …