18 research outputs found

    Numerical modelling of advanced modulation formats and WDM transmission

    Get PDF
    This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system

    Doubling of optical signals using triangular pulses

    Get PDF
    We propose a novel technique of doubling optical pulses in both frequency and time domains based on a combination of cross-phase modulation induced by a triangular pump pulse in a nonlinear Kerr medium and subsequent propagation in a dispersive medium

    Cardiac-induced localized thoracic motion detected by a fiber optic sensing scheme

    Get PDF
    The cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organization. The development of new diagnostic tools that are practicable and economical to scrutinize the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals up to 54 Hz covering both ballistocardiography (below 20 Hz) and audible heart sounds (20 Hz upward), using a system based on curvature sensors formed from fiber optic long period gratings. This system can visualize the real-time three-dimensional (3-D) mechanical motion of the heart by using the data from the sensing array in conjunction with a bespoke 3-D shape reconstruction algorithm. Visualization is demonstrated by adhering three to four sensors on the outside of the thorax and in close proximity to the apex of the heart; the sensing scheme revealed a complex motion of the heart wall next to the apex region of the heart. The detection scheme is low-cost, portable, easily operated and has the potential for ambulatory applications

    mzMLb: A Future-Proof Raw Mass Spectrometry Data Format Based on Standards-Compliant mzML and Optimized for Speed and Storage Requirements

    Get PDF
    With ever-increasing amounts of data produced by mass spectrometry (MS) proteomics and metabolomics, and the sheer volume of samples now analyzed, the need for a common open format possessing both file size efficiency and faster read/write speeds has become paramount to drive the next generation of data analysis pipelines. The Proteomics Standards Initiative (PSI) has established a clear and precise extensible markup language (XML) representation for data interchange, mzML, receiving substantial uptake; nevertheless, storage and file access efficiency has not been the main focus. We propose an HDF5 file format "mzMLb" that is optimized for both read/write speed and storage of the raw mass spectrometry data. We provide an extensive validation of the write speed, random read speed, and storage size, demonstrating a flexible format that with or without compression is faster than all existing approaches in virtually all cases, while with compression is comparable in size to proprietary vendor file formats. Since our approach uniquely preserves the XML encoding of the metadata, the format implicitly supports future versions of mzML and is straightforward to implement: mzMLb's design adheres to both HDF5 and NetCDF4 standard implementations, which allows it to be easily utilized by third parties due to their widespread programming language support. A reference implementation within the established ProteoWizard toolkit is provided

    Numerical modelling of advanced modulation formats and WDM transmission

    No full text
    This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Analysis of adjustable and fixed DRX mechanism for power saving in LTE/LTE-Advanced

    No full text
    The 4G standard Long Term Evolution (LTE) has been developed for high-bandwidth mobile access for today's data-heavy applications, consequently, a better experience for the end user. To extend the user equipment battery lifetime, plus further support various services and large amount of data transmissions, the 3GPP standards for LTE/LTE-Advanced has adopted discontinuous reception (DRX). However, there is a need to optimize the DRX parameters, so as to maximize power saving without incurring network re-entry and packet delays. In this paper, we take an overview of the fixed frame DRX cycle and compare it against an adjustable DRX cycle of the LTE/LTE-Advanced power saving mechanism, by modelling the system with bursty packet data traffic using a semi-Markov process. Based on the analytical model, we will show the trade-off relationship between the power saving and wake-up delay performance

    Analysis of adjustable and fixed DRX mechanism for power saving in LTE/LTE-Advanced

    No full text
    The 4G standard Long Term Evolution (LTE) has been developed for high-bandwidth mobile access for today's data-heavy applications, consequently, a better experience for the end user. To extend the user equipment battery lifetime, plus further support various services and large amount of data transmissions, the 3GPP standards for LTE/LTE-Advanced has adopted discontinuous reception (DRX). However, there is a need to optimize the DRX parameters, so as to maximize power saving without incurring network re-entry and packet delays. In this paper, we take an overview of the fixed frame DRX cycle and compare it against an adjustable DRX cycle of the LTE/LTE-Advanced power saving mechanism, by modelling the system with bursty packet data traffic using a semi-Markov process. Based on the analytical model, we will show the trade-off relationship between the power saving and wake-up delay performance

    RZ-DPSK transmission at 80 Gbit/s channel rate using in-line semiconductor optical amplifiers

    No full text
    We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 80 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers
    corecore