30 research outputs found

    A Glider-Compatible Optical Sensor for the Detection of Polycyclic Aromatic Hydrocarbons in the Marine Environment

    Get PDF
    This study presents the MiniFluo-UV, an ocean glider-compatible fluorescence sensor that targets the detection of polycyclic aromatic hydrocarbons (PAHs) in the marine environment. Two MiniFluos can be installed on a glider, each equipped with two optical channels (one PAH is measured per channel). This setup allows the measurement of up to 4 different fluorescent PAHs: Naphthalene, Phenanthrene, Fluorene and Pyrene. Laboratory tests on oil products (Maya crude oil and Diesel fuel) as well as on marine samples near industrial areas (urban harbor and offshore installations) revealed that the concentration of the four PAHs targeted accounted for 62–97% of the total PAH concentration found in samples (∑16 PAHs determined by standard international protocols). Laboratory tests also revealed that for marine applications, the calibration on Water Accommodated Fraction (WAF) of crude oil is more appropriate than the one on pure standards (STD). This is because PAH fluorescence is constituted in large part of alkylated compounds that are not considered with STD calibration. Results from three glider deployments with increasing levels of complexity (a laboratory trial, a field mission in non-autonomous mode and a fully autonomous mission) are also presented. During field deployments, the MiniFluo-glider package was able to detect concentration gradients from offshore marine waters toward the head of a Mediterranean harbor (< 80 ng L−1) as well as hydrocarbon patches at the surface waters of an oil and gas exploitation field in the North Sea (< 200 ng L−1, mainly Naphthalene). It is suggested that using only the WAF calibration, the concentration derived with the MiniFluo agrees within one order of magnitude with the concentration determined by Gas Chromatography coupled with Mass Spectrometry (overestimation by a factor 7 on average). These performances can be improved if the calibration is made with a WAF with PAH proportions similar to the one find in the environment. Finally, it is shown that the use of in situ calibration on water samples collected during the glider deployment, when possible, gives the best results

    Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions

    Get PDF
    The pelagic realm of the dark ocean is characterized by high hydrostatic pressure, low temperature, high-inorganic nutrients, and low organic carbon concentrations. Measurements of metabolic activities of bathypelagic bacteria are often underestimated due to the technological limitations in recovering samples and maintaining them under in situ environmental conditions. Moreover, most of the pressure-retaining samplers, developed by a number of different labs, able to maintain seawater samples at in situ pressure during recovery have remained at the prototype stage, and therefore not available to the scientific community. In this paper, we will describe a ready-to-use pressure-retaining sampler, which can be adapted to use on a CTD-carousel sampler. As well as being able to recover samples under in situ high pressure (up to 60 MPa) we propose a sample processing in equi-pressure mode. Using a piloted pressure generator, we present how to perform sub-sampling and transfer of samples in equi-pressure mode to obtain replicates and perform hyperbaric experiments safely and efficiently (with <2% pressure variability). As proof of concept, we describe a field application (prokaryotic activity measurements and incubation experiment) with samples collected at 3,000m-depth in the Mediterranean Sea. Sampling, sub-sampling, transfer, and incubations were performed under in situ high pressure conditions and compared to those performed following decompression and incubation at atmospheric pressure. Three successive incubations were made for each condition using direct dissolved-oxygen concentration measurements to determine the incubation times. Subsamples were collected at the end of each incubation to monitor the prokaryotic diversity, using 16S-rDNA/rRNA high-throughput sequencing. Our results demonstrated that oxygen consumption by prokaryotes is always higher under in situ conditions than after decompression and incubation at atmospheric pressure. In addition, over time, the variations in the prokaryotic community composition and structure are seen to be driven by the different experimental conditions. Finally, within samples maintained under in situ high pressure conditions, the active (16S rRNA) prokaryotic community was dominated by sequences affiliated with rare families containing piezophilic isolates, such as Oceanospirillaceae or Colwelliaceae. These results demonstrate the biological importance of maintaining in situ conditions during and after sampling in deep-sea environments

    Plankton community structure in response to hydrothermal iron inputs along the Tonga-Kermadec arc

    Get PDF
    The Western Tropical South Pacific (WTSP) basin has been identified as a hotspot of atmospheric dinitrogen fixation due to the high dissolved iron ([DFe]) concentrations (up to 66 nM) in the photic layer linked with the release of shallow hydrothermal fluids along the Tonga-Kermadec arc. Yet, the effect of such hydrothermal fluids in structuring the plankton community remains poorly studied. During the TONGA cruise (November-December 2019), we collected micro- (20-200 Όm) and meso-plankton (>200 Όm) samples in the photic layer (0-200 m) along a west to east zonal transect crossing the Tonga volcanic arc, in particular two volcanoes associated with shallow hydrothermal vents (< 500 m) in the Lau Basin, and both sides of the arc represented by Melanesian waters and the South Pacific Gyre. Samples were analyzed by quantitative imaging (FlowCam and ZooScan) and then coupled with acoustic observations, allowing us to study the potential transfer of phytoplankton blooms to higher planktonic trophic levels. We show that micro- and meso-plankton exhibit high abundances and biomasses in the Lau Basin and, to some extent, in Melanesian waters, suggesting that shallow hydrothermal inputs sustain the planktonic food web, creating productive waters in this otherwise oligotrophic region. In terms of planktonic community structure, we identified major changes with high [DFe] inputs, promoting the development of a low diversity planktonic community dominated by diazotrophic cyanobacteria. Furthermore, in order to quantify the effect of the shallow hydrothermal vents on chlorophyll a concentrations, we used Lagrangian dispersal models. We show that chlorophyll a concentrations were significantly higher inside the Lagrangian plume, which came into contact with the two hydrothermal sites, confirming the profound impact of shallow hydrothermal vents on plankton production

    Turbulence Measurements in a Stratified Man-Controlled Estuary, the Adour Case

    No full text
    COMInternational audienceThe Adour river is a partially stratified river flowing into the Basque Country coastal waters. The dynamics of estuarine waters and suspended matters, including density stratification, mixing, residence and renewal times, is controlled by the competition between the input of terrestrial waters with strongly varying discharge and suspended load and the meso-tidal fluctuations of the ocean level. Since pycnoclines can form a decisive barrier for exchange processes within a water body, it is important to better understand the processes that govern their evolution in particular for water quality studies. A turbulence-dedicated field campaign was performed in the lower estuary in September 2017. The instrumentation is based on fixed bottom moorings with high frequency point currentmeters and velocity profilers. During the well-mixed phases of the tidal cycles, the flow properties are in good agreement with the standard hypothesis of the canonical turbulent boundary layer in open channel flows. Measurements carried out during the arrival of the salt wedge at rising tide demonstrate the strong influence of density stratification on the flow dynamics. Both turbulent kinetic energy and momentum fluxes are damped by the density stratification, which consequently affect the mixing and resuspension processes near the river bed. A second series of experiments has been performed in order to identify the turbulent properties away from the bed. Instrumented lagrangian drifters have been deployed during the two-layers flow pattern in the estuary. The results again show the important effect of density stratification. The local measurements of small-scale turbulent processes will be placed and discussed in a more general contextaiming to describe the intra-estuary exchanges between river and ocean waters and the fate of dissolved and suspended matter

    On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization

    No full text
    International audienceAbstract. In the ocean, remineralization rate associated with sinking particles is a crucial variable. Since the 1990s, particulate biogenic barium (Baxs) has been used as an indicator of carbon remineralization by applying a transfer function relating Baxs to O2 consumption (Dehairs's transfer function, Southern Ocean-based). Here, we tested its validity in the Mediterranean Sea (ANTARES/EMSO-LO) for the first time by investigating connections between Baxs, prokaryotic heterotrophic production (PHP) and oxygen consumption (JO2-Opt; optodes measurement). We show that (1) higher Baxs (409 pM; 100–500 m) occurs in situations where integrated PHP (PHP100/500=0.90) is located deeper, (2) higher Baxs occurs with increasing JO2-Opt, and (3) there is similar magnitude between JO2-Opt (3.14 mmol m−2 d−1; 175–450 m) and JO2-Ba (4.59 mmol m−2 d−1; transfer function). Overall, Baxs, PHP and JO2 relationships follow trends observed earlier in the Southern Ocean. We conclude that such a transfer function could apply in the Mediterranean Sea

    Significant Impact of Hydrothermalism on the Biogeochemical Signature of Sinking and Sedimented Particles in the Lau Basin

    No full text
    Iron (Fe) is an essential micronutrient for diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly Fe, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the spatio‐temporal impact of hydrothermal fluids on particulate trace metal concentrations and biological activity. To identify the composition of sinking particles across a wide area of the WTSP, we deployed sediment traps at various depths, both close and further west of the Tonga Arc. Seafloor sediments were cored at these deployment sites, including at a remote location in the South Pacific Gyre. The sinking particles were composed of a large amount of biological material (up to 88 mg d−1), indicative of the high productivity of the region. A significant portion of this material (∌21 ± 12 wt.%) was lithogenic of hydrothermal origin, as revealed through Al‐Fe‐Mn tracing. The sinking material showed similar patterns between lithogenic and biogenic fractions, indicating that hydrothermal input within the photic layer triggered surface production. A hydrothermal fingerprint was suggested in the sediments due to the high sedimentation rates (>47 cm kyr−1) and the presence of large, heterogeneous, metal‐rich particles. The presence of nearby active deep hydrothermal sources was suspected near the Lau Ridge due to the large particle size (1–976 Όm) and the significant excess of Fe and Mn (2–20 wt.%). Overall, this study revealed that hydrothermal sources have a significant influence on the biogeochemical signature of particles in the region

    Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)

    Get PDF
    Abstract. We report on the sub-basins variability of particulate organic carbon (POC) remineralization in the central and western Mediterranean Sea during a late spring period (PEACETIME cruise). POC remineralization rates (MR) were estimated using the excess non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters (100–1000 m) and compared with prokaryotic heterotrophic production (PHP). MR range from 25 ± 2 to 306 ± 70 mg C m−2 d−1. Results reveal larger MR processes in the Algerian (ALG) basin compared to the Tyrrhenian (TYR) and Ionian (ION) basins. Baxs inventories and PHP also indicates that significant remineralization occurs over the whole mesopelagic layers in the ALG basin in contrast to the ION and TYR basins where remineralization is mainly located in the upper 500 m horizon. We propose that this may be due to particle injection pumps likely driven by strong winter convection in the Western basin of the Mediterranean Sea. This implies significant differences in the remineralization length scale of POC in the central Mediterranean Sea relative to the western region

    Temporal and spatial variability in the hydrothermal signature of sinking particles and sediments in the Western Tropical South Pacific Ocean

    No full text
    Iron (Fe) is an essential micronutrient for phytoplankton, particularly diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly iron, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the impact of hydrothermal fluids on particulate trace metal concentrations and biological activity. To identify the composition of sinking particles across a wide area of the WTSP, we deployed sediment traps at various depths, both close and further west of the Tonga Arc. Seafloor sediments were cored at these deployment sites, including at a remote location in the South Pacific Gyre. The sinking particles were composed of a large amount of biological material, indicative of the high productivity of the Lau Basin. A significant portion of this material was lithogenic of hydrothermal origin, as revealed through Al-Fe-Mn tracing. The sinking material showed similar patterns between lithogenic and biogenic fractions, indicating that hydrothermal input within the photic layer triggered surface production. A hydrothermal fingerprint was suggested in the sediments due to the high sedimentation rates and the presence of large, heterogeneous, trace metal-rich particles. The presence of nearby active deep hydrothermal sources was suspected near the Lau Ridge due to the large particle size and the significant enrichment of Fe and Mn. Overall, this study revealed that deep and shallow hydrothermal sources along with submarine volcanism have a significant influence on the biogeochemical signature of particles in the Lau Basin at large spatial and temporal scales

    Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions

    No full text
    International audienceThe vertical flux of marine snow particles significantly reduces atmospheric carbon dioxide concentration. In the mesopelagic zone, a large proportion of the organic carbon carried by sinking particles dissipates thereby escaping long term sequestration. Particle associated prokaryotes are largely responsible for such organic carbon loss. However, links between this important ecosystem flux and ecological processes such as community development of prokaryotes on different particle fractions (sinking vs. non-sinking) are yet virtually unknown. This prevents accurate predictions of mesopelagic organic carbon loss in response to changing ocean dynamics. Using combined measurements of prokaryotic heterotrophic production rates and species richness in the North Atlantic, we reveal that carbon loss rates and associated microbial richness are drastically different with particle fractions. Our results demonstrate a strong negative correlation between prokaryotic carbon losses and species richness. Such a trend may be related to prokaryotes detaching from fast-sinking particles constantly enriching non-sinking associated communities in the mesopelagic zone. Existing global scale data suggest this negative correlation is a widespread feature of mesopelagic microbes
    corecore