62 research outputs found

    Spirobifluorene-based polymers of intrinsic microporosity for the adsorption of methylene blue from wastewater: effect of surfactants

    Get PDF
    Owing to their high surface area and superior adsorption properties, spirobifluorene polymers of intrinsic microporosity (PIMs), namely PIM-SBF-Me (methyl) and PIM-SBF-tBu (tert-butyl), were used for the first time, to our knowledge, for the removal of methylene blue (MB) dye from wastewater. Spirobifluorene PIMs are known to have large surface area (can be up to 1100 m2 g−1) and have been previously used mainly for gas storage applications. Dispersion of the polymers in aqueous solution was challenging owing to their extreme hydrophobic nature leading to poor adsorption efficiency of MB. For this reason, cationic (cetyl-pyridinium chloride), anionic (sodium dodecyl sulfate; SDS) and non-ionic (Brij-35) surfactants were used and tested with the aim of enhancing the dispersion of the hydrophobic polymers in water and hence improving the adsorption efficiencies of the polymers. The effect of surfactant type and concentration were investigated. All surfactants offered a homogeneous dispersion of the polymers in the aqueous dye solution; however, the highest adsorption efficiency was obtained using an anionic surfactant (SDS) and this seems owing to the predominance of electrostatic interaction between its molecules and the positively charges dye molecules. Furthermore, the effect of polymer dosage and initial dye concentration on MB adsorption were also considered. The kinetic data for both polymers were well described by a pseudo-second-order model, while the Langmuir model better simulated the adsorption process of MB dye on PIM-SBF-Me and the Freundlich model was more suitable for PIM-SBF-tBu. Moreover, the maximum adsorption capacities recorded were 84.0 and 101.0 mg g−1 for PIM-SBF-Me and PIM-SBF-tBu, respectively. Reusability of both polymers was tested by performing three adsorption cycles and the results substantiate that both polymers can be effectively re-used with insignificant loss of their adsorption efficiency (®). These preliminary results suggested that incorporation of a surfactant to enhance the dispersion of hydrophobic polymers and adsorption of organic contaminants from wastewater is a simple and cost-effective approach that can be adapted for many other environmental applications

    Highly stable fullerene-based porous molecular crystals with open metal sites

    Get PDF
    The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C60 or C70) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions

    Synthesis and gas permeation properties of tetraoxidethianthrene-based polymers of intrinsic microporosity

    Get PDF
    A series of nine polymers of intrinsic microporosity (PIMs) derived from different bis-catechol monomers and 2,3,7,8-tetrafluoro-5,5′,10,10′-tetraoxidethianthrene (TOT) were synthesised and tested for their potential use as gas separation membranes. As powders, they demonstrate significant nitrogen adsorption at 77 K allowing apparent BET surface areas ranging from 432-785 m2g−1to be calculated. Six of the polymers were found to be soluble in quinoline facilitating the casting of self-standing films to allow the assessment of their gas separation properties. Spirobifluorene-based polymers exhibited the highest gas permeability, approaching the performance of the archetypalPIM-1, and the data for some are placed close to the 2008 Robeson upper bounds for O2/N2and CO2/CH4. Ageing studies showed a gradual decrease in permeability, accompanied by an increase in selectivity that moved the data more-or-less parallel to the Robeson upper bounds. The two polymers with the lowest and highest gas permeability were both tested over the temperature range 25-55 °C and an enhancement in permeability for all gases, with the exception of CO2, was observed along with decreased selectivity for almost all gas pairs. The latter seems to be due to the simultaneous drop in both diffusivity selectivity and solubility selectivity for all gas pairs, but especially those involving CO2, due to a strong decrease in solubility with increasing temperature. The analysis of the energetic and entropic selectivity provides further insight into the remarkable transport properties of PIMs. Overall, the tetraoxidethianthrene unit proves to be a suitable building block for use in PIM synthesis for applications in gas separation membranes and these PIMs have a one to two orders of magnitude higher permeability than more common polysulfones.</p

    Ultrapermeable Polymers of Intrinsic Microporosity (PIMs) Containing Spirocyclic Units with Fused Triptycenes

    Get PDF
    Polymers of intrinsic microporosity (PIMs), such as the archetypal spirobisindane-based PIM-1, are among the most promising new materials for making gas separation membranes with high permeance for potential use in high-throughput applications. Here it is shown that ultrapermeable PIMs can be prepared by fusing rigid and bulky triptycene (Trip) to the spirobisindane (SBI) unit. PIM-SBI-Trip and its copolymer with PIM-1 (PIM-1/SBI-Trip) are both ultrapermeable after methanol treatment (PCO2 > 20 000 Barrer). Old films, although less permeable, are more selective and therefore provide data that are close to the recently redefined Robeson upper bounds for the important CO2/CH4, CO2/N2, and O2/N2 gas pairs. Temperature-dependent permeation measurements and analysis of the entropic and energetic contributions of the gas transport parameters show that the enhanced performance of these polymers is governed by strong size-sieving character, mainly due to the energetic term of the diffusivity, and related to their high rigidity. Both polymers show a relatively weak pressure-dependence in mixed gas permeability experiments up to 6 bar, suggesting a potential use for CO2 capture from flue gas or for the upgrading of biogas

    Customising excitation properties of polycyclic aromatic hydrocarbons by rational positional heteroatom doping: the peri-xanthenoxanthene (PXX) case

    Get PDF
    In this paper we tackle the challenge of gaining control of the photophysical properties of PAHs through a site-specific N-doping within the structural aromatic framework. By developing a simple predictive tool that identifies C(sp2)-positions that if substituted with a heteroatom would tailor the changes in the absorption and emission spectral envelopes, we predict optimal substitutional patterns for the model peri-xanthenoxanthene (PXX) PAH. Specifically, TDDFT calculations of the electron density difference between the S1 excited state and S0 ground state of PXX allowed us to identify the subtleties in the role of sites i.e., electron donating or withdrawing character on excitation. The replacement of two C(sp2)-atoms with two N-atoms, in either electron donating or withdrawing positions, shifts the electronic transitions either to low or high energy, respectively. This consequently shifts the PXX absorption spectral envelop bathochromically or hypsochromically, as demonstrated by steady-state absorption spectroscopic measurements. Within the series of synthesised N-doped PXX, we tune the optical band gap within an interval of ∼0.4 eV, in full agreement with the theoretical predictions. Relatedly, measurements show the more blueshifted the absorption/emission energies, the greater the fluorescence quantum yield value (from ∼45% to ∼75%). On the other hand, electrochemical investigations suggested that the N-pattern has a limited influence on the redox properties. Lastly, depending on the N-pattern, different supramolecular organisations could be obtained at the solid-state, with the 1,7-pattern PXX molecule forming multi-layered, graphene-like, supramolecular sheets through a combination of weak H-bonding and π–π stacking interactions. Supramolecular striped patterned sheets could also be formed with the 3,9- and 4,10-congeners when co-crystallized with a halogen-bond donor molecule

    Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy

    Get PDF
    The relationship, during physical aging, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) was investigated using pure gas permeability and atomic force microscopy (AFM) in force spectroscopy mode. Excellent agreement of Young’s modulus measured for the archetypal PIM-1 with values obtained by other techniques in the literature, confirms the suitability of AFM force spectroscopy for the rapid and convenient assessment of mechanical properties. Results from different polymers including PIM-1 and five ultrapermeable benzotriptycene-based PIMs provide direct evidence that size selectivity is strongly correlated to Young’s modulus. In addition, film samples of one representative PIM (PIM-DTFM-BTrip) were subjected to both normal physical aging and to accelerated aging by thermal conditioning under vacuum for comparison. Accelerated aging resulted in a similar decrease in permeability and increase in Young’s modulus as normal aging, however, significant differences suggest that thermally induced accelerated aging occurs throughout the bulk of the polymer film whereas normal aging occurs predominantly at the surface of the film. For all PIMs, the increased in film rigidity upon aging led to an increase in gas size selectivity

    Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity

    Get PDF
    A detailed analysis of the basic transport parameters of two triptycene-based polymers of intrinsic microporosity (PIMs), the ultrapermeable PIM-TMN-Trip and the more selective PIM-BTrip, as a function of temperature from 25 to 55 °C, is reported. For both PIMs, high permeability is based on very high diffusion and solubility coefficients. The contribution of these two factors on the overall permeability is affected by the temperature and depends on the penetrant dimensions. Energetic parameters of permeability, diffusivity, and solubility are calculated using Arrhenius–van’t Hoff equations and compared with those of the archetypal PIM-1 and the ultrapermeable, but poorly selective poly(trimethylsilylpropyne). This considers, for the first time, the role of entropic and energetic selectivities in the diffusion process through highly rigid PIMs. This analysis demonstrates that how energetic selectivity dominates the gas-transport properties of the highly rigid triptycene PIMs and enhances the strong size-sieving character of these ultrapermeable polymers

    Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity

    Get PDF
    Membranes composed of Polymers of Intrinsic Microporosity (PIMs) have the potential for energy efficient industrial gas separations. Here we report the synthesis and gas permeability data of a series of ultrapermeable PIMs, of two-dimensional chain conformation and based on benzotriptycene structural units, that demonstrate remarkable ideal selectivity for most gas pairs of importance. In particular, the CO2 ultrapermeability and high selectivity for CO2 over CH4, of key importance for the upgrading of natural gas and biogas, and for CO2 over N2, of importance for cost-effective carbon capture from power plants, exceed the performance of the current state-of-the-art polymers. All of the gas permeability data from this series of benzotriptycene-based PIMs are placed well above the current 2008 Robeson upper bounds for CO2/CH4 and CO2/N2. Indeed, the data for some of these polymers fall into a linear correlation on the benchmark Robeson plots [i.e. log(PCO2/PCH4) versus log PCO2 and log(PCO2/PN2) versus log PCO2], which are parallel to, but significantly above, that of the 2008 CO2/CH4 and CO2/N2 upper bounds, allowing their revision. The redefinition of these upper bounds sets new aspirational targets for polymer chemists to aim for and will result in more attractive parametric estimates of energy and cost efficiencies for carbon capture and natural/bio gas upgrading using state-of-the-art CO2 separation membranes
    • …
    corecore