90 research outputs found

    Differential Form of the Collision Integral for a Relativistic Plasma

    Full text link
    The differential formulation of the Landau-Fokker-Planck collision integral is developed for the case of relativistic electromagnetic interactions.Comment: Plain TeX, 5 page

    Transport Theory of Massless Fields

    Get PDF
    Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of massless quantum fields. We analyse the scalar field models with quartic and cubic interaction terms. In the ϕ4\phi^4 model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the derivation of the transport equations strongly resembles that one of the massive fields, but the subset of diagrams which provide the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasiparticles is found, where, except the mean-field and collision terms, there are terms which are absent in the standard Boltzmann equation. The structure of these terms is discussed. In the massless ϕ3\phi^3 model the massive quasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not surprising since the ϕ3\phi^3 model is anyhow ill defined.Comment: 32 pages, no macro

    The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation

    Full text link
    Within the framework of the semiclassical approximation, we derive the Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD plasma. The probability of the plasmon-plasmon scattering at the leading order in the coupling constant is obtained. This probability is gauge-independent at least in the class of the covariant and temporal gauges. It is noted that the structure of the scattering kernel possesses important qualitative difference from the corresponding one in the Abelian plasma, in spite of the fact that we focused our study on the colorless soft excitations. It is shown that four-plasmon decay is suppressed by the power of gg relative to the process of nonlinear scattering of plasmons by thermal particles at the soft momentum scale. It is stated that the former process becomes important in going to the ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio

    An automated quasi-continuous capillary refill timing device

    Get PDF
    Capillary refill time (CRT) is a simple means of cardiovascular assessment which is widely used in clinical care. Currently, CRT is measured through manual assessment of the time taken for skin tone to return to normal colour following blanching of the skin surface. There is evidence to suggest that manually assessed CRT is subject to bias from ambient light conditions, a lack of standardisation of both blanching time and manually applied pressure, subjectiveness of return to normal colour, and variability in the manual assessment of time. We present a novel automated system for CRT measurement, incorporating three components: a non-invasive adhesive sensor incorporating a pneumatic actuator, a diffuse multi-wavelength reflectance measurement device, and a temperature sensor; a battery operated datalogger unit containing a self contained pneumatic supply; and PC based data analysis software for the extraction of refill time, patient skin surface temperature, and sensor signal quality. Through standardisation of the test, it is hoped that some of the shortcomings of manual CRT can be overcome. In addition, an automated system will facilitate easier integration of CRT into electronic record keeping and clinical monitoring or scoring systems, as well as reducing demands on clinicians. Summary analysis of volunteer (n = 30) automated CRT datasets are presented, from 15 healthy adults and 15 healthy children (aged from 5 to 15 years), as their arms were cooled from ambient temperature to 5°C. A more detailed analysis of two typical datasets is also presented, demonstrating that the response of automated CRT to cooling matches that of previously published studies

    Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory

    Full text link
    The quantum time evolution of \phi^4-field theory for a spatially homogeneous system in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym equations including the tadpole and sunset self-energies. Whereas the tadpole self-energy yields a dynamical mass, the sunset self-energy is responsible for dissipation and an equilibration of the system. In particular we address the dynamics of the spectral (`off-shell') distributions of the excited quantum modes and the different phases in the approach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. The investigation explicitly demonstrates that the only translation invariant solutions representing the stationary fixed points of the coupled equation of motions are those of full thermal equilibrium. They agree with those extracted from the time integration of the Kadanoff-Baym equations in the long time limit. Furthermore, a detailed comparison of the full quantum dynamics to more approximate and simple schemes like that of a standard kinetic (on-shell) Boltzmann equation is performed. Our analysis shows that the consistent inclusion of the dynamical spectral function has a significant impact on relaxation phenomena. The different time scales, that are involved in the dynamical quantum evolution towards a complete thermalized state, are discussed in detail. We find that far off-shell 1 3 processes are responsible for chemical equilibration, which is missed in the Boltzmann limit. Finally, we address briefly the case of (bare) massless fields. For sufficiently large couplings λ\lambda we observe the onset of Bose condensation, where our scheme within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure

    Mechanisms Underlying Stage-1 TRPL Channel Translocation in Drosophila Photoreceptors

    Get PDF
    Background: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. Methodology/Principal Findings: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. Conclusions/Significance: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protei

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Sole coloration as an unusual aposematic signal in a Neotropical toad

    Get PDF
    Many animals have evolved remarkable strategies to avoid predation. In diurnal, toxic harlequin toads (Atelopus) from the Amazon basin, we find a unique colour signal. Some Atelopus populations have striking red soles of the hands and feet, visible only when walking. When stationary, the toads are hard to detect despite their yellow-black dorsal coloration. Consequently, they switch between high and low conspicuousness. Interestingly, some populations lack the extra colour display of the soles. We found comprehensive support that the red coloration can act as an aposematic signal directed towards potential predators: red soles are significantly more conspicuous than soles lacking red coloration to avian predators and the presence of the red signal significantly increases detection. Further, toads with red soles show bolder behaviour by using higher sites in the vegetation than those lacking this signal. Field experiments hint at a lower attack risk for clay models with red soles than for those lacking the signal, in a population where the red soles naturally occur. We suggest that the absence of the signal may be explained by a higher overall attack risk or potential differences of predator community structure between populations. © 2019, The Author(s)
    corecore