306 research outputs found
Thermal Impact on Spiking Properties in Hodgkin-Huxley Neuron with Synaptic Stimulus
The effect of environmental temperature on neuronal spiking behaviors is
investigated by numerically simulating the temperature dependence of spiking
threshold of the Hodgkin-Huxley neuron subject to synaptic stimulus. We find
that the spiking threshold exhibits a global minimum in a "comfortable
temperature" range where spike initiation needs weakest synaptic strength,
indicating the occurrence of optimal use of synaptic transmission in neural
system. We further explore the biophysical origin of this phenomenon in ion
channel gating kinetics and also discuss its possible biological relevance in
information processing in neural systems.Comment: 10 pages, 4 figure
Numerical Solution of Differential Equations by the Parker-Sochacki Method
A tutorial is presented which demonstrates the theory and usage of the
Parker-Sochacki method of numerically solving systems of differential
equations. Solutions are demonstrated for the case of projectile motion in air,
and for the classical Newtonian N-body problem with mutual gravitational
attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a
university web site, but has now been cited and praised in one or more
refereed journals. I am therefore submitting it to the Cornell arXiv so that
it may be read in response to its citations. See "Spiking neural network
simulation: numerical integration with the Parker-Sochacki method:" J. Comput
Neurosci, Robert D. Stewart & Wyeth Bair and
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378
Designing all-graphene nanojunctions by covalent functionalization
We investigated theoretically the effect of covalent edge functionalization,
with organic functional groups, on the electronic properties of graphene
nanostructures and nano-junctions. Our analysis shows that functionalization
can be designed to tune electron affinities and ionization potentials of
graphene flakes, and to control the energy alignment of frontier orbitals in
nanometer-wide graphene junctions. The stability of the proposed mechanism is
discussed with respect to the functional groups, their number as well as the
width of graphene nanostructures. The results of our work indicate that
different level alignments can be obtained and engineered in order to realize
stable all-graphene nanodevices
Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy
Scanning tunneling microscopy (STM) gives us the opportunity to map the
surface of functionalized carbon nanotubes in an energy resolved manner and
with atomic precision. But this potential is largely untapped, mainly due to
sample stability issues which inhibit reliable measurements. Here we present a
simple and straightforward solution that makes away with this difficulty, by
incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a
few layer graphene - nanotube composite. This enabled us to measure energy
resolved tunneling conductance maps on the nanotubes, which shed light on the
level of doping, charge transfer between tube and functional groups and the
dependence of defect creation or functionalization on crystallographic
orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene,
STM, CITS, ST
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of these—and of other
mutations—in terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
Single Tube, High Throughput Cloning of Inverted Repeat Constructs for Double-Stranded RNA Expression
BACKGROUND: RNA interference (RNAi) has emerged as a powerful tool for the targeted knockout of genes for functional genomics, system biology studies and drug discovery applications. To meet the requirements for high throughput screening in plants we have developed a new method for the rapid assembly of inverted repeat-containing constructs for the in vivo production of dsRNAs. METHODOLOGY/PRINCIPAL FINDINGS: The procedure that we describe is based on tagging the sense and antisense fragments with unique single-stranded (ss) tails which are then assembled in a single tube Ligase Independent Cloning (LIC) reaction. Since the assembly reaction is based on the annealing of unique complementary single stranded tails which can only assemble in one orientation, greater than ninety percent of the resultant clones contain the desired insert. CONCLUSION/SIGNIFICANCE: Our single-tube reaction provides a highly efficient method for the assembly of inverted repeat constructs for gene suppression applications. The single tube assembly is directional, highly efficient and readily adapted for high throughput applications
Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels
The seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions has perplexed scientists for decades. Although numerous models have addressed selective permeation in K+ channels, the combination of conduction efficiency and ion selectivity has not yet been linked through a unified functional model. Here, we investigate the mechanism of ion selectivity through atomistic simulations totalling more than 400 μs in length, which include over 7,000 permeation events. Together with free-energy calculations, our simulations show that both rapid permeation of K+ and ion selectivity are ultimately based on a single principle: the direct knock-on of completely desolvated ions in the channels' selectivity filter. Herein, the strong interactions between multiple 'naked' ions in the four filter binding sites give rise to a natural exclusion of any competing ions. Our results are in excellent agreement with experimental selectivity data, measured ion interaction energies and recent two-dimensional infrared spectra of filter ion configurations
Voltage-Dependent Gating in a “Voltage Sensor-Less” Ion Channel
An unusual mechanism of ion channel regulation generates voltage-dependent gating in the absence of a canonical voltage-sensing domain
Optoelectronic and Excitonic Properties of Oligoacenes: Substantial Improvements from Range-Separated Time-Dependent Density Functional Theory
The optoelectronic and excitonic properties in a series of linear acenes
(naphthalene up to heptacene) are investigated using range-separated methods
within time-dependent density functional theory (TDDFT). In these rather simple
systems, it is well-known that TDDFT methods using conventional hybrid
functionals surprisingly fail in describing the low-lying La and Lb valence
states, resulting in large, growing errors for the La state and an incorrect
energetic ordering as a function of molecular size. In this work, we
demonstrate that the range-separated formalism largely eliminates both of these
errors and also provides a consistent description of excitonic properties in
these systems. We further demonstrate that re-optimizing the percentage of
Hartree-Fock exchange in conventional hybrids to match wavefunction-based
benchmark calculations still yields serious errors, and a full 100%
Hartree-Fock range separation is essential for simultaneously describing both
of the La and Lb transitions. Based on an analysis of electron-hole transition
density matrices, we finally show that conventional hybrid functionals
overdelocalize excitons and underestimate quasiparticle energy gaps in the
acene systems. The results of our present study emphasize the importance of
both a range-separated and asymptotically-correct contribution of exchange in
TDDFT for investigating optoelectronic and excitonic properties, even for these
simple valence excitations.Comment: Accepted by the Journal of Chemical Theory and Computatio
- …