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ABSTRACT 

The seeming contradiction that K+ channels conduct K+ ions at maximal throughput 

rates while not permeating the slightly smaller Na+ ion has perplexed scientists for 

decades. Although numerous models have addressed selective permeation in K+ 

channels, the combination of conduction efficiency and ion selectivity has not yet 

been linked through a unified functional model. Here, we investigate the mechanism 

of ion selectivity through atomistic simulations totalling more than 400 microseconds 

in length, which include over 7000 permeation events. Together with free-energy 

calculations, our simulations show that both rapid permeation of K+ and ion 

selectivity are ultimately based on a single principle: the direct knock-on of 

completely desolvated ions in the channels' selectivity filter. Herein, the strong 

interactions between multiple 'naked' ions in the four filter binding sites give rise to a 

natural exclusion of any competing ions. Our results are in excellent agreement with 

experimental selectivity data, measured ion interaction energies, and recent two-

dimensional infrared spectra of filter ion configurations.  
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Ionic currents through K+ channels establish the membrane voltage in all cells and 

terminate action potentials in electrically excitable cells. K+ channels facilitate the 

passage of K+ ions to near-diffusion limited rates, while reliably excluding smaller 

Na+ ions1,2. How K+ channels achieve the combination of these seemingly 

incompatible features has intrigued scientists for decades3-7. A clear separation 

between K+ and Na+ currents is necessary to ensure sharp action potentials, 

facilitating the rapid propagation of electric signals in excitable cells such as neurons. 

However, despite intense efforts, a unified explanation for how K+ channels maintain 

strict K+ selectivity under maximal ion conduction rates has remained elusive.  

Ions pass through the K+ channels’ selectivity filter (SF), which represents their 

conserved functional core, enabling rapid and selective ion permeation8. It contains 

four successive K+ binding sites (S1-S4), with two additional binding sites at its 

extracellular entrance (S0) and in the water-filled central cavity (Scav)9 (Fig. 1A). 

Predating structural elucidation of the channels, the snug-fit model, still preferred by 

most present textbooks10,11, posited that the K+ binding sites in a rigid SF provide an 

unfavourable binding environment for the smaller Na+ ions4. Upon determination of 

the first K+ channel structures by x-ray crystallography, the electron density observed 

in the SF K+ binding sites was interpreted to reflect alternate occupation with water 

and ions1,12,13. This conclusion informed subsequent structure-based and 

computational models14-22, which suggested that ion selectivity arises from the 

intrinsic flexibility of specific SF binding sites14,15, the collective dynamics of ions 

and water within the SF16,17, or energetic differences in ion binding13,14,16-20. These 

models were based on the assumption that permeating K+ ions in the SF are separated 

by water molecules ('soft knock-on' mechanism). The majority of previous 

computational studies identified the SF K+ binding sites as thermodynamically K+ 

selective, due to the optimal coordination of a K+ ion by eight carbonyl ligands, while 

Na+ binding of to the same geometry was found to be energetically less 

favourable14,18-20,23-25. However, the complete sequence of microscopic events leading 

to efficient K+ permeation and simultaneous Na+ exclusion during ion permeation has 

never been revealed, partially due to the inability to observe high, sustained currents 

in previous atomistic molecular dynamics (MD) simulations26. 

Recently however, a reanalysis of the crystallographic data showed that K+ ions form 

close ion pairs (i.e. direct ion-ion contacts) at neighbouring SF ion binding sites27. 



Furthermore, accompanying molecular dynamics simulations suggested that the 

strong electrostatic interaction between ions at short distance plays a key role in 

establishing the observed high rates of K+ ion conduction, while water molecules are 

largely excluded from permeating the channel27. Since the instantaneous ion 

occupancies of the SF under ‘direct Coulomb knock-on’ conditions drastically differ 

from those of ‘soft knock-on’28, the competition between K+ and Na+ ions, and 

therefore the mechanism of ion selectivity, is likely to be based on different principles 

than previously thought. As it is now possible to directly simulate ion currents and 

analyse thousands of individual ion permeation events at the atomistic level, we set 

out to apply this methodology to achieve unfiltered insight into the determinants of 

ion selectivity in K+ channels under actual permeation conditions. Our extended 

simulations spanning more than 400 µs of simulated time allowed us to analyse in 

detail over 7000 individual ion permeation events. 

Our results present a novel mechanism of ion selectivity in K+ channels providing a 

unifying explanation for the two major, seemingly irreconcilable, physiological 

characteristics of K+ channel conduction – highly efficient ion transfer under exquisite 

K+ selectivity. We show that full desolvation of ions in the SF – required to establish 

close contacts between K+ ions in the neighbouring sites and rapid conduction – 

efficiently excludes Na+ ions from permeating the channel. Importantly, in contrast to 

previous ion permeation models29-31, our findings show that any significant level of 

water co-permeation invariably leads to drastically diminished ion selectivity and 

reduced ion conduction rates. Finally, we demonstrate that recent K+ channel data 

from two-dimensional infrared (2D IR) spectroscopy30, which were originally 

interpreted to be exclusively compatible with filter occupancies under water co-

permeating conditions, are equally compatible with states displaying directly 

contacting ions in the SF. 

  



RESULTS 

The direct Coulomb knock-on is intrinsically ion-selective 

We conducted atomistic simulations to directly investigate the origins of ion 

selectivity and the coupling of ion and water flux under K+ channel permeation 

conditions, employing both electrochemical ion gradients and applied electric fields to 

generate membrane voltages in the range of 220–300 mV. These acted as driving 

forces for the permeation of K+ and Na+ ions across a variety of channels including 

KcsA, MthK, Kv1.2, NaK2K and NaK2CNG-N. The data we collected comprise 

more than 7000 ion permeation events in mixed and pure K+ and Na+ solutions 

(Supplementary Tables 1-9).  

We first focused on the most studied K+ channel KcsA (Fig. 1A). The channel current 

in KcsA is strongly dominated by permeating K+ ions in all K+-containing solutions 

(Fig. 1B). In mixed solutions of a 2:1 (K+/Na+) ratio, the KcsA current shows a 

K+/Na+ permeability ratio of 55:1. Even under excess of Na+ (1:2 K+/Na+ mixture), 

KcsA favours K+ permeation with a permeability quotient of 22:1. Only in the 

complete absence of K+, a residual Na+ current of ~15% of the maximum K+ flux is 

observed. 

K+ ions permeate the channel in a fully dehydrated state, consistent with the 'direct 

Coulomb knock-on' mechanism. In pure K+ solution, we therefore do not observe any 

co-permeation of water (Fig. 1B). By contrast, Na+ ions co-permeate with water. As a 

consequence, few water molecules are carried along during the rare event of Na+ 

traversing the SF (Fig. 1C). In both the 2:1 and 1:2 (K+/Na+) mixed solutions, the 

resulting overall water-to-ion flux ratio is about 0.03 ± 0.02 (Fig. 1B). In pure Na+ 

solution, the raised Na+ current leads to increased water permeation, with a water-ion 

flux ratio of 0.22 ± 0.08.  

Experimental studies have reported K+ channel Na+/K+ permeability ratios between 

0.006–0.045,6,32. The simulated Na+/K+ ratios of 0.02–0.04 are thus in good agreement 

with available experimental data. Further, for KcsA, we find a reduction in outward 

K+ ion current to about one-third of that in pure KCl for the 2:1 (K+/Na+) 

concentration regime, while it decreases to about 20% under Na+ excess (1:2 mixture; 

Fig. 1B). This observation reflects the experimental observation of K+ channel block 

by intracellular Na+, which has been widely reported in single-channel 



electrophysiology studies33,34 and is clearly visible in the ionic traces through the SF 

(Fig. 1C).  

The SF of many K+ channels, including KcsA, undergoes a conformational change at 

K+ concentrations below ~20 mM on timescales of up to seconds, preventing ion flux 

under low-K+ conditions1,35,36. This filter gating or collapse provides an additional 

layer of ion selectivity to K+ channels. On the shorter timescale of our simulations, 

however, the SF remains in the conductive state. Our observations made in pure Na+ 

solutions are therefore compared to experiments on the constitutively conductive SF 

variant, KcsAD-Ala77, in which filter collapse is sterically blocked. In experiments, this 

semisynthetic channel form conducts Na+ when K+ is completely absent, with currents 

similar to those we observe, while as in our simulations, the addition of K+ disrupts 

Na+ conduction35. The experimentally recorded ratio between maximum K+ and 

residual Na+ current in KcsAD-Ala77 is in remarkably good agreement with our 

findings35.  

 

Strict K+ selectivity is coupled to the exclusion of water 

Next, we expanded our investigation to the bacterial MthK and the eukaryotic Kv1.2 

channel (W362Y variant) as well as the engineered channels NaK2CNG-N and 

NaK2K (Fig. 2A). NaK2K and NaK2CNG-N are both generated by introducing 

mutations in the SF of the non-selective bacterial ion channel NaK37,38. The SF of 

NaK possesses only two ion binding sites, which are chemically equivalent to sites S3 

and S4 of canonical K+ channels, and displays bound water molecules within a 

widened vestibule39,40. In NaK2CNG-N, the NaK SF is modified to yield three 

consecutive ion binding sites (S2-S4), while in NaK2K, the mutations reconstruct a 

canonical K+ channel SF with four consecutive ion binding sites38. In experiments, 

MthK, Kv1.2 and NaK2K are strongly K+ selective, while NaK2CNG-N shows 

similar permeability for both K+ and Na+ 41,42. 

The diminished K+ selectivity of the NaK and NaK2CNG channels has previously 

been associated with the reduced number of SF ion binding sites38, the increased 

hydration level of ions22,43,44, for instance seen in the NaK crystal structure39,40, and 

enhanced structural plasticity of the SF45. This led to the conclusion that only 

channels with four consecutive ion binding sites in the SF can ensure fully K+ 



selective ion permeation. However, the mechanistic basis for this phenomenon has 

remained unclear, in particular under permeation conditions38,42,46. 

In our simulations, we find strictly K+ selective current in KcsA, MthK, NaK2K, and 

Kv1.2 W362Y (Fig. 2B). The total channel current shows some differences for pure 

K+ solution. In mixed K+/Na+ solutions, the current overwhelmingly arises from K+ 

permeation events, both under excess of K+ and Na+. In pure Na+, only KcsA and 

NaK2K give rise to appreciable Na+ fluxes.  

By contrast, NaK2CNG-N shows a greatly reduced K+ selectivity with considerable 

Na+ permeation in the K+/Na+ mixtures, as well as the largest level of Na+ current in 

pure Na+ amongst all of the investigated channels. It also displays the lowest K+ 

current in pure K+ solution. Notably, the Na+ current is linked to a substantially raised 

level of water co-permeation. While the water-to-ion flux ratio is very small in all of 

the strictly K+ selective channels (below 0.05 in all regimes in which K+ is present), 

the absence of the fourth binding site in NaK2CNG-N leads to a much diminished 

exclusion of water, both during Na+ and K+ permeation, and thus allows both ion 

types to traverse the SF with similar probability. We observe a water-ion ratio of >>1 

under all ionic regimes in NaK2CNG-N, showing that a significant part of the ions' 

solvation shell is retained in the SF during permeation. These observations are in 

accordance with previous experiments, in which mutations reducing the number of K+ 

binding sites in the SF from four to three abolished K+ selectivity38,42, and explain 

these experimental observations by insufficient exclusion of hydrating water around 

the ions. Structurally, we find that increased co-permeation of water is underpinned 

by an enhanced flexibility of the NaK2CNG-N SF with regard to filters with four ion 

binding sites. These dynamics cause a small widening of the SF on average, and 

thereby slightly relax the strict geometric constraints for ion transfer, especially at the 

central ion binding site. Similar findings have recently been reported for the related 

NaK channel45. 

 

Fully desolvated ions in the SF are in agreement with 2D-IR spectroscopy 
experiments 

All of these observations suggested that the strict exclusion of water, and ion 

conduction by the direct Coulomb knock-on mechanism, underpin ion selectivity in 

K+ channels under permeation conditions. We therefore re-examined a recent 



investigation, in which equilibrium molecular dynamics simulations were used to 

interpret 2D-IR spectra on the isotope-labeled SF of synthetic KcsA under no voltage. 

In this study, it was found that only IR spectra that were predicted from simulations of 

water-and-ion occupied SFs were compatible with the experimental data, after fitting 

the relative population of each state and additionally taking carbonyl-flipped SF 

conformations into consideration30.  

By contrast, SF ion populations under non-equilibrium ion flux conditions were not 

fitted to match the IR data, but rather taken directly from our previous simulations 

which were conducted under voltage27. As shown in the present work, these K+ 

conducting states display direct ion-ion contacts. The corresponding spectra of these 

conducting states were interpreted to disagree with the IR experiments, which led to 

the conclusion that water molecules are required to accompany K+ ions during ion 

permeation. 

To reconcile this apparent discrepancy, we used our previously reported ion 

configurations (together with those shown here) in the ion-conductive SF, and 

equilibrated these states further at 0 mV to replicate the conditions of the IR 

experiment (see Supplementary Methods and Supplementary Table 10). We then 

followed the same protocol employed in previous studies30 to calculate the final IR 

spectra. Spectra calculated from a weighted (fitted) combination of these states yield 

good agreement with the experimental spectra, similar to a weighted sum of the 

water-containing states described previously and independently repeated by us (the 

final spectra are shown in Fig. 3 and Supplementary Fig. 4). Furthermore, when 

configurations with only direct ion-ion contacts in the SF are taken into consideration, 

a wide range of spectral parameters such as peak positions, nodal slopes and intensity 

ratios, are also consistent with the experimental data (Table 1). We conclude that the 

analysis based on 2D-IR spectra cannot differentiate between the two scenarios of SF 

occupancy and thus could support both mechanisms of ion permeation with and 

without co-permeating water. 

 

 

 

 



How does ion dehydration contribute to selectivity? 

The number of K+ and Na+ ions traversing KcsA from the intracellular side during 

conduction shows a strong divergence upon SF entry (Supplementary Fig. 6). The 

fraction of Na+ ions migrating from S4 to S3 decreases by about 18-fold, while that of 

K+ remains nearly constant. Overall, in pure KCl, 44% of all K+ ions entering the SF 

at S4 eventually permeate fully, compared to only 2.5% of Na+ ions in pure NaCl (the 

presence of K+ reduces this proportion further to less than 1%; Supplementary Fig. 7).  

Since Na+ interacts more strongly with water than K+, the free energy required to fully 

dehydrate Na+ ions exceeds that of K+ by 74.8 kJ/mol (see Supplementary Methods 

and Supplementary Fig. 8). This energy difference contributes to the thermodynamic 

basis for ion selectivity at every SF site. Free energy calculations on occupancy states 

with direct ion-ion contacts, i.e. states that lead to high-efficiency ion permeation 

under voltage (Supplementary Fig. 8), show that all of the internal SF K+ binding sites 

in KcsA are K+ selective when this dehydration free energy is taken into account 

(Supplementary Fig. 8). In particular, the SF entry sites S4 and S1 favour K+ binding 

by up to 27.6 kJ/mol. By contrast, sites in-plane with the filter carbonyl groups 

between the K+ binding positions remain slightly Na+-selective, in agreement with our 

findings from ion flux simulations.  

The SF is too narrow to allow ions to permeate in the presence of their full hydration 

shells. Most ions therefore enter and pass through the SF either in a partially or fully 

dehydrated state. The vast majority of permeation events we observe follow the 

‘direct Coulomb knock-on’ mechanism, where K+ ions traverse the SF of selective 

channels without hydrating water.  

In contrast, the classic ‘soft knock-on’ mechanism, in which one water molecule 

permeates along with each ion in the SF, would compromise the maximal dehydration 

of permeating ions. According to our observations, the thermodynamic basis for ion 

selectivity is thus optimised when the maximum number of solvating water molecules 

is removed upon entry into the SF. Simultaneously, direct contacts between fully 

dehydrated ions lead to maximally efficient ion permeation in our simulations. We 

therefore identify the complete loss of the ion hydration shell during SF entry, 

induced by the unique architecture of the SF, as the major contributing factor 

underpinning both ion selectivity and high conduction rates.  



Thermodynamic and kinetic factors of selective ion permeation within the SF  

Finally, we aimed to resolve the processes that contribute to selectivity when residual 

Na+ ions compete with K+ ions within the SF. To distinguish thermodynamic effects 

(e.g., differential affinity of K+ and Na+ to filter binding sites)25 from kinetic effects, 

which may inhibit the passage of ion types between the binding sites7, we recorded K+ 

and Na+ density profiles in the SF, based on KcsA simulation data under various ion 

concentration regimes (Supplementary Fig. 9). Although these density profiles do not 

strictly reflect equilibrium free energies, we use them here as an approximate measure 

to quantify differences in binding affinity for K+ and Na+ in the SF (manifested as 

different density minima) and kinetic barriers (peak heights). 

Due to their high K+ affinity, the SF binding sites S4–S0 show strong K+ density in 

pure KCl solutions. Lower minima for K+ compared to Na+ in mixed K+/Na+ 

conditions demonstrate the channel’s thermodynamic K+ selectivity, which we also 

observe in free energy calculations (Supplementary Fig. 8). Considering transition 

kinetics, large barriers occur for Na+ transfer between S3–S2 and near S1, however 

they do not exceed the maximum barrier to K+ translocation between S4–S3. Only 

under excess of Na+, slightly raised kinetic barriers for Na+ transfer are observed.  

However, in contrast to K+ ions, the Na+ density shows additional Na+ binding sites 

between the canonical K+ positions, located in-plane with the backbone carbonyl 

oxygen atoms. These sites can be observed even in the absence of K+, but under K+ 

excess, Na+ occupation mainly shifts to positions between the K+ binding sites S3–S4, 

S1–S2 (Supplementary Fig. 9). As a consequence, the distance between two 

favourable Na+ binding positions in the SF centre increases to ~7 Å, more than twice 

the distance observed for a K+ ion pair at S2 and S3, which we have found to be 

crucial for high-speed conduction of K+27.  

The simultaneous presence of K+ and Na+ in the SF therefore has a major effect on the 

SF occupancy pattern, as under excess of K+, binding of Na+ between the K+ positions 

leads to a disruption of the optimal ion-ion distance for efficient conduction. 

Accordingly, Na+ ions cannot permeate the channels at high kinetic rates to generate 

sizable Na+ currents, and they instead block K+ conduction, as observed in 

experiments33,34 and also suggested by calculations of potentials of mean force in a 

previous computational study23.  



Since the typical ion concentration of K+ is 140 mM and that of Na+ is near 10 mM in 

the cytoplasm47, only few Na+ ions would typically compete with an excess of K+ ions 

during their physiological outward permeation. As there is a higher concentration of 

Na+ on the extracellular side of the membrane, we also investigated the selectivity for 

extracellular Na+ upon outward (and also inward) K+ flux in additional sets of 

simulations (Supplementary Figs. 10-11), confirming strict selectivity also under 

these conditions.  

 
DISCUSSION 

The results we present demonstrate an intimate relationship between ion selectivity, 

rapid ion conduction, and the dehydration of permeating ions in K+ channels (Fig. 4). 

They also highlight the additional role of complex multi-ion interactions between the 

preferred K+ ions and competing Na+ ions within the SF for enhanced selectivity.   

Across a range of different channel types, we show that the level of water co-

permeation in the SF is closely linked to the ion selectivity and conduction efficiency 

of the channels. An increased amount of water in the SF invariably decreases both, 

conduction rates and ion selectivity (Fig. 2; Supplementary Figs. 12-14). Channels 

with only three K+ binding sites in their SF do not dehydrate permeating ions to the 

same degree as the canonical K+ channels, which possess four stacked ion binding 

positions in their filter. As a consequence, they lack the exquisite ion selectivity of the 

canonical K+ channels (Fig. 4). The selectivity for K+ is optimised when the ions are 

maximally dehydrated, as observed for example for the KcsA, MthK and NaK2K 

channels. Notably, Na+ channels possess a much wider SF (~8 Å) than K+ channels 

(~3 Å)48, and consequently, Na+ ions permeate these channels in a mostly hydrated 

form49. 

In all of the K+ channel types we investigated, Na+ ions typically cross the SF together 

with some remaining hydrating water molecules. In the SF of the selective channel 

types, competing K+ ions however displace residual Na+ ions to positions located 

between the crystallographically determined K+ binding sites, where they cannot 

fulfill the criterion for highly efficient ion conduction, i.e. ion pair formation in the K+ 

binding sites (Fig. 4, centre). Free energy calculations also identify these intermediate 

sites as preferred positions for Na+ binding (Supplementary Fig. 8). These results, 

together with the data we obtain from analysing ~7000 individual permeation events, 



therefore challenge the snug-fit model, which posits that the smaller Na+ is 

coordinated less optimally than K+ by the carbonyl groups of the canonical SF K+ 

binding sites. This model is, to date, cited most often as the basis for K+ channel 

selectivity in current textbooks10,11 despite having been disproven many 

times14,18,19,23,50. Our results now combine aspects of the previously proposed 

alternative mechanisms into a unified model, which simultaneously explains rapid ion 

permeation and selectivity by multi-ion, direct Coulomb knock-on. 

This mechanism is in agreement with a wide array of available experimental data, 

including crystallographic, electrophysiological and spectroscopic investigations. By 

calculating 2D IR spectra for a large number of possible occupancy states of the SF, 

and by using the same averaging scheme as used in previous work30, we demonstrate 

that states which exclusively display direct ion-ion contacts in the SF are fully 

compatible with recent experimental 2D-IR spectra. Notably, the carbonyl-flipped 

states that are necessary to explain the IR data on the basis of water-separated ion 

configurations in the SF correspond to non-conductive filter states in our simulations 

in all K+ channels except in the non-selective NaK2CNG-N. Moreover, our 

observations explain the results from previous experiments studying the interactions 

of a range of cations with K+ channels (see Supplementary Text in SI)51. We therefore 

obtain a convergent picture of high-conductance K+ channel permeation and exquisite 

ion selectivity based on maximally dehydrated ions, which occupy neighbouring 

positions in a linear array of at least four SF ion binding sites. In this unified model, 

efficient throughput and strict selectivity are no longer contradictory, but arise as two 

necessary consequences of a single mechanism. 

  



METHODS 
Computational electrophysiology simulations 
We studied spontaneous ion permeation through potassium channels, in pure and 
mixed K+/Na+ solutions, driven by the transmembrane voltage induced by charge 
imbalances as implemented in the CompEL (computational electrophysiology) 
method in GROMACS52,53. For open-state KcsA, we used the x-ray structure (PDB 
id: 3f5w54), with the selectivity filter in the conductive configuration (PDB id: 1k4c1), 
embedded in a patch of a POPC membrane, as reported in our previous simulations27.  
For open-state MthK, we used the high resolution structure of an open state (PDB id: 
3ldc (ref)). For open-state Kv1.2 we used the pore domain from the ‘paddle-chimera’ 
Kv1.2-Kv2.1 structure (PDB id: 2r9r), that remains open in simulation at positive 
voltages)26. For the open-state NaK2K and NaK2CNG-N, we used high resolution 
structures (PDB id: 3ouf and 3k06). All simulations were carried out with 
GROMACS 5.0 or 5.155-58, using the dual membrane setup typical of the CompEL 
scheme, with an ionic imbalance between the compartments of 2e-, yielding a 
transmembrane voltage of ~220mV or by applying an external electric field59 yielding 
a transmembrane voltage of ~280 mV. The ionic currents were estimated by counting 
the number of ions permeating the SF in time. A list of all simulations is shown in 
Tables S1-S9. All simulation details and simulation description of other channels are 
provided in the SI. Kv1.2 W362Y was used instead of WT Kv1.2 due to SF 
instabilities in MD simulations (see Supplementary Fig. 14). An equivalent mutation 
in Kv1.6 yields a channel with almost the same conduction and selectivity properties 
as WT Kv1.660 (see also SI). In NaK2K and NaK2CNG-N the F92A mutation was 
used to increase the ionic current, as in experiments42.  
 
2D IR spectral calculations 
In our 2D IR calculations, we used a single KcsA channel embedded in a POPC 
membrane, similar to the system reported in Kratochvil et al.30. We used the SF 
occupancy states observed in our computational electrophysiology simulations, and 
compared them with the experimental spectrum. To do so, a number of specific 
occupancy states of the SF, corresponding to ion-conductive configurations, were 
selected (see Supplementary Table 3), and further equilibrated at 0 mV for 10 ns per 
state, to mimic the conditions of the IR experiments. Subsequently, a number of 
snapshots (at least 9 per single occupancy state) were randomly selected from the last 
2 ns of equilibration. Each snapshot was then used as a starting point for a simulation 
of 1 ns length, during which the positions of atoms were saved every 20 fs. These 
trajectories were then used for spectral calculations. The spectral calculations were 
performed by first extracting the amide I Hamiltonian, transition dipoles and site 
frequencies from the 1 ns trajectories. Next, the amide units corresponding to those 
labeled in the experiment30, were selected and their frequencies were shifted by -66 
cm-1 to account for the isotope label. 1D and 2D IR spectra were calculated with the 
numerical integration of the Schrödinger equation method (NISE)61,62. The linear 1D 
spectrum is then obtained by a Fourier transform of the linear response function, 
while the 2D spectrum is obtained with a two-dimensional Fourier transform with 
respect to the coherence times. Full computational procedure is described in the SI. 
 

Free energy calculations 
We performed free energy calculations for individual binding sites in the SF of KcsA 
to assess their thermodynamic selectivity between K+ and Na+ ions, for the occupancy 



states most frequently visited during ion permeation. Consequently, we focused on 
KK0K and 0KKK occupancies (Supplementary Figure 8). Three snapshots per 
occupancy pattern were selected from the computational electrophysiology 
simulations, transformed back to a single membrane setup, and further equilibrated 
for 40 ns at 0 mV. The final snapshots from these simulations were then used for K+ 
to Na+ alchemical free energy calculations to obtain 𝛥𝐺!,!"!"#$  for each occupied site. To 
assess the existence and selectivity of potential Na+ binding sites in the SF, as 
previously suggested13,25, we introduced a single Na+ ion instead of a K+ ion at each 
site for both starting occupancies, ultimately resulting in the following occupancies: 
KNaK, NaKK, KKNa (Fig. 3B). After 40 ns of equilibration, the introduced Na+ ions 
bound to their preferred binding sites, in plane with four SF carbonyl oxygen atoms. 
The final snapshots from these simulations were then used for Na+ to K+ alchemical 
free energy calculations. To calculate the free energy differences between K+ and Na+, 
we employed the free energy code in GROMACS. The free energy differences were 
calculated using the Multistate Bennett Acceptance Ratio (MBAR) method63 as 
implemented in the ‘alchemical analysis’ utility64. The full computational procedure is 
described in the SI. 
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FIGURE CAPTIONS 
Fig. 1: Ion selectivity of KcsA. (a) Open state form of KcsA with the main K+ binding sites 
of the SF (S1–S4) at the interface between the four channel subunits. (b) KcsA currents and 
water/ion permeation ratios at a voltage of ~220 mV in solutions of 300 mM ionic strength 
containing both K+ and Na+ ions. At a 2:1 excess of K+, less than 2% of the current originates 
from Na+ flux (K+: purple; Na+: yellow), corresponding to a selectivity of 55:1 for K+ over 
Na+. At a 2:1 excess of Na+, less than 5% of all conduction events are caused by Na+. Only in 
the total absence of K+ ions, more substantive Na+ current is seen, which is however much 
smaller than that in pure K+ solutions. Error bars depict standard error of the mean (SEM, see 
also Supplementary Table 1). (c) Representative traces of ions traversing the SF of KcsA. The 
positions in the SF of K+ ions (purple) and Na+ ions (yellow) are shown versus simulated 
time. During periods in which Na+ binds to the SF, the overall permeation rate is slowed 
down drastically, whereas in the absence of Na+ highly efficient K+ permeation takes place. 
Representative instantaneous SF occupancies are shown for K+ permeation (purple circles) 
and Na+ permeation (yellow circles), respectively. K+ and Na+ ions are displayed as purple 
and yellow spheres. The permeating K+ ion is marked in darker colour, and water molecules 
are shown as red and white spheres. 
 
Fig. 2: The relationship between conduction efficiency, ion selectivity and water co-
permeation. (a) The selective channels KcsA, MthK, NaK2K and Kv1.2 W362Y contain 
four, while the non-selective NaK2CNG-N possesses three SF ion binding sites. (b) Currents 
and water-ion flux ratios at voltages of 220–280 mV in pure and mixed K+/Na+ solutions 
(Error bars: SEM). KcsA, MthK, NaK2K and Kv1.2 W362Y show high K+ currents in all 
solutions, lowered by the presence of Na+ in a concentration-dependent manner (sodium 
block). MthK, NaK2K and Kv1.2 W362Y strictly exclude Na+ permeation, with the exception 
of NaK2K in pure Na+ solution. The water-ion flux ratio is minimal in all selective channels. 
Conversely, NaK2CNG-N displays a high level of water permeation in all solutions (water-
ion flux ratio >> 1). Water molecules in the SF lead to reduced K+ currents. (c) Simulation 
snapshots showing outward K+ permeation events, Na+ block and relief of Na+ block in MthK 
(K+ ions in purple shades, with the permeating ion darkest, and Na+ in yellow sphere 
representation; water molecules in red and white). Here, Na+ does not reach S4 and is instead 
replaced by K+. (d) Simulation snapshots of K+ and Na+ permeation in NaK2CNG-N (purple 
and yellow circles, respectively). Direct ion-ion contacts form transiently, but permeation in 
NaK2CNG-N occurs with intervening water molecules. Periods where only one ion is present 
in the SF lead to higher water permeation levels. Na+ ions cross the channel partially 
hydrated, allowing more water molecules to enter the SF. Control simulations show the 
robustness of these observations for a wide range of force-field parameters (Supplementary 
Figs. 1-2). Simulation snapshots for NaK2K and Kv1.2 W362Y are displayed in 
Supplementary Fig. 3. 

 
Fig. 3: Calculated 2D IR spectrum for occupancy states characteristic for the direct 
Coulomb knock-on conduction mechanism. Weights used to generate the spectrum are 
given above the schematic representation of each occupancy. The spectrum displays two pairs 
of peaks at (ωpump, ωprobe) = (1600 cm-1, 1603 cm-1) and (ωpump, ωprobe) = (1579 cm-1, 1584 cm-1). 
These peaks are in good agreement with the experimentally reported values, (ωpump, ωprobe) = 
(1603 cm-1, 1610 cm-1) and (ωpump, ωprobe) = (1580 cm-1, 1584 cm-1), when notably only states 
with direct ion-ion pairs in the SF are taken into account. The spectrum is a linear 
combination of the spectra of individual states that are frequently visited under permeation 
conditions (Supplementary Fig. 5). The weights were derived following a protocol from 
Kratochvil et al30. 

 



Fig. 4: Schematic representation of the mechanisms of K+ ion selective (left) and non-
selective (right) channel permeation. In selective K+ channels containing four SF binding 
sites, ions are observed to permeate largely without their solvation shell (blue). In contrast, 
we find that non-selective permeation in channels with three SF ion binding sites is based on 
partial retention of the hydration shell around the ions. The desolvation penalty associated 
with dehydration of Na+ ions prevents most Na+ ions from SF entry (centre, (1)) in the K+ 
selective channels. Na+ ions that surmount this barrier in K+ selective channels tend to adopt 
positions between the K+ binding sites, adding to their ion selectivity (centre, (2)) by 
impeding efficiently permeating (direct knock-on) conditions.  
  



TABLES 

 
Comparison of IR spectra 

Spectrum Center ωpump 

(cm-1) 
Center ωprobe 

(cm-1) 
Slope Intensity  

ratio 
Experimental* 1603 

1580 
1610 
1584 

0.58 (0.01) 
0.60 (0.11) 

1.25 

soft knock-on* 1603 
1580 

1607 
1586 

0.51 (0.03) 
0.52 (0.09) 

1.25 

soft knock-on 1609 
1570 

1612 
1575 

0.58 (0.10) 
0.60 (0.10) 

1.27 

direct knock-on 1600 
1579 

1603 
1584 

0.64 (0.10) 
0.49 (0.10) 

1.33 

Table 1. Properties of experimental and calculated 2D IR spectra. Asterisks (*) 
indicate data reported in Kratochvil et al., Science 201630. 
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