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Abstract

We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and
magnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (New
J. Phys. 15 085030) onssilicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphor-
ene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression
for band warping is obtained analytically and found to be of different order than for graphene. We
prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the litera-
ture. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in
even powers of the wave vector. We predict that the energies change quadratically in the presence of a
perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those
for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band
structures have been carried out in order to evaluate some of the k - p parameters.

1. Introduction

Graphene is an interesting electronic material because of its two-dimensionality, zero-gap, and linear dispersion
near the Fermi energy [1]. These properties differ from standard three-dimensional semiconductors. The study
of other two-dimensional materials beyond graphene came about quickly, with BN and MoS, being two early
choices. More recent candidates include silicene [2] and phosphorene [3], though earlier studies of these two
materials exist [4, 5].

Nowadays, much of the study of electronic properties relies on ab initio calculations, in particular density-
functional theory (DFT). DFT is very powerful in its ability to predict ground-state properties such as structures
fairly well. It is less reliable and much more computationally intensive to calculate excited-state properties such
as optical and transport properties; the inclusion of an external magnetic field is still a difficult problem and not
implemented in standard DFT codes. Empirical tight-binding models have been early alternatives to
DFT; indeed, the linear dispersions for both graphene [6] and silicene [2] were first identified using tight-
binding models, even though the linear dispersion for silicene was probably first obtained (but not identified) in
1994 using ab initio calculations [4].

However, the most versatile and physically-transparent band-structure model is the k - p model [7], often
giving energy bands analytically in the vicinity of extrema in terms of meaningful parameters such as effective
masses and optical matrix elements. For graphene, this is the Dirac Hamiltonian linear in the wave vector,
though nonlinear contributions have also been worked out [8]. For silicene, only the Dirac Hamiltonian, with
linear electric field terms, has been written down [9]. For phosphorene, a couple of k - p models have recently
appeared [10, 11]. Liand Appelbaum [11], in particular, did a very careful study of the band structure using
perturbation theory near the I point, identifying the contributions to the effective masses; however, they again
did not include external fields.

In the current work, we are therefore concerned with the most general k - p Hamiltonian for silicene and
phosphorene, particularly in the presence of external fields since this problem has not been considered fully. We

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Table 1. Group of wave vector Ds at the K point (silicene). k;are components of the wave vector, €;; of the
strain tensor, B; of an external magnetic field, E; of an external electric field, and J; of an angular momentum

operator.

D; E 2C; 3C, 0Odd Even Matrix
I 1 1 1 k24 k) kL € + €y, €2 1

I 1 1 -1 k., B, E, ).

I3 2 -1 0 (k- ky), (B, —By) (E, Ey) (- =T

Table 2. D; multiplication table of irre-
ducible representations.

I I I
I I h I8
I I I I3

I I3 I8 LHenLer

employ the method of invariants to derive such Hamiltonians. The primary goal is to identify possible terms not
considered in previous work. A secondary goal is to thus obtain a better understanding of the band structures of
silicene and phosphorene.

2. Method of invariants

Here we apply the method of invariants [12] to the materials of interest to us. Since most of the DFT calculations
to date have not included relativistic effects and we are considering low atomic number elements, we have left
out spin effects in this work; the main consequence in the band structure is the neglect of the small spin—orbit
splitting of bands (e.g., for silicene, thisis a 1.55 meV splitting at the K point [ 13]). The symmetries of interest are
the space-group symmetries and time-reversal symmetry. Space-group symmetry only requires one to study the
character tables of the point-group symmetry, whereas the consideration of time-reversal symmetry requires an
application of the Herring test [12]. Details of the theory are not repeated here as we have applied the formalism
exactly as presented in [12].

2.1. Silicene

The point of interest for silicene is the K point in the first Brillouin zone (figure 1) since that is where the valence
and conduction bands touch with alinear dispersion. In table 1, the group of the wave vector at point K for
silicene is shown. We use the expressions

ke = ke + ik,
ko= ky — ik, (1)

and similarly for other physical quantities. It can be seen that all the irreducible representations are either one-
dimensional or two-dimensional, implying that the energy bands at K are all either non-degenerate or doubly
degenerate. The Fermi level is at a point of double degeneracy.

Tables 1-3 allow us to determine the Hamiltonian from combinations of single group functions based on
symmetry principles formed. The next step is to apply the Herring test [12]. It follows from the character table of

Djs that
2(g?) =m @

g

for all representations y;, i = 1, 2, 3where =6 is the order of the group D3, gis a representation of a group
element, and y is the character of that group element. Further, since a spatial symmetry R exists such that

—k = Rk wherek is the Kpoint (and k # —k), all irreducible representations belong to the case a2 [12]. In this
case, time-reversal symmetry additionally requires all Hamiltonian terms to satisfy

T*H(R4n)7=7ﬂgKy, (3)

where 7, K, and R are the time-reversal operator, a [] invariant term, and a spatial symmetry operator
establishing a link between basis functions atk and —k, respectively. In the case of silicene, 7= 1and R = R,
can be chosen where R, denotes reflection in the x axis using a coordinate system where the x axis passes through
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Table 3. D; coupling constant table
(5 ®L=5@® I, ® I3). The
notations I’y and I’y denote the
first component of the first I3 func-
tion and the second component of
the second I3 function, respec-

tively, etc.

GLQRn

I %(rgrﬁ' + 1717
b (B - i)
r: riry

ri nirf

the center of an edge in the honeycomb lattice formed by the silicon atoms (referring to the same choice of
coordinate system as in [ 14]). The symbol { takes the value +1 and —1 for even and odd functions under time-
reversal symmetry, respectively.

With the preceding analysis, we can write down the most general Hamiltonian for silicene allowed by
symmetry. The result s, to leading orders,

H=H +H, (4)
H,=H+ HF + HE, (5)

H=a (ke — ko, ) + ay (k2 + k})
+asky (3k2 = k2)Je + as (k2 + k7)) (K, Je — ki) + ooy (6)

He=ei(ex + €y ) + €26z + €3 (€ + € ) (kS — ki)
+ eaf (ew = €)ky + 26k, [T + ese (Ko = key) + ooy (7)
HE = 6E.). + & (E} + E}) + esE2 + ca(Ecky — Eyky)
e (K2 = k) Ex = 2kekyEy | + o (B2 + E2) (k)i - KoJ,)
+ cg[ (E2 - B} )k, + 2ExEykx]]z T (8)
HE = by (B.Js + ByJy) + baB.). + bs (kyBy — keBy ) + ..., 9)

where the dots refer to higher-order terms. a;, b;, c;and e;are k - p parameters which are undetermined in the
method of invariants. The H; terms are intrinsic band-structure Hamiltonians while the other ones exist in the
presence of external fields. In the above Hamiltonian, the J; matrices represent the pseudospin degree of freedom
and are the (2 X 2) Pauli spin matrices. The difference between the work of Geissler et al [9] and the current one
is that they were focussed on the interplay between spin—orbit coupling and an external electric field (and, hence,
in the topological properties) at the linear level (in k and E,), whereas we are more interested in understanding
the basic band structure of the material beyond the linear terms and in the presence of other external fields.
Thus, the a, and a5 terms provide quadratic in k contributions while the a, and as are of cubic order but only the
a4 term gives rise to an anisotropic term. Hence, one can readily say that the band structure of silicene to linear
and quadratic orders is isotropic and anisotropic effects only manifest themselves if cubic terms become
important. A discussion of the band dispersion is provided in the next section.

For comparison, we reproduce the corresponding H; for graphene [8]:

H; = agi (ke + kdy) + an (k2 + k7) + ag| (K} = k2)J + 2Kk, | (10)

The sign difference in the ag; term is due to a different choice of phase while the ag; is the corresponding
anisotropy term for graphene. It is seen here to be quadratic in k though it is cubic in k for silicene.

2.2. Phosphorene
Phospherene and its bulk counterpart black phosphorus have the same in-plane translational symmetry and the
nonsymmorphic space group is base-centered orthorhombic [11] (figure 2). Its factor group is symmorphic
with D,j, whose character table and associated functions are shown in table 4.

The multiplication table of irreducible representations for D5, is given in table 5. Note that the parity of the
product representation follows the simplerule: 17" @ I = I, 7V Q I, = 5,17 Q I, =15,

3
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different vertical heights.

Cy: K->K”
6, K->K

Figure 1. Real (left) and reciprocal (right) space pictures of the structure of silicene. The two atoms (solid and open circles) are at

different vertical heights.

@)

@)

@)

@

Figure 2. Real (left) and reciprocal (right) space pictures of the structure of phosphorene. The two atoms (solid and open circles) are at

Table 4. Group of wave vector D5, at the I" point (phosphorene).

D,y E C,(2) C,(») C,(x) i Oy Oyx Oyz Odd Even Matrix
it 1 1 1 1 1 1 1 1 k2 k) k2 e €4y €2 1

ry 1 -1 1 -1 1 -1 1 -1 , keks, €4 J,

ry 1 1 -1 -1 1 1 -1 -1 . kiky, ey ),

ry 1 -1 -1 1 1 -1 -1 1 B, kyk., €y, Je

Iy 1 1 1 1 -1 -1 -1 -1

Iy 1 -1 1 -1 -1 +1 -1 1 k,

ry 1 1 -1 -1 -1 -1 1 1 k,

ry 1 -1 -1 1 -1 1 1 -1 .

Table 5. D,;, multiplication table of

irreducible representations.

I I I I
I I I I3 I
h I I I I
I3 I3 I I I
I I I h I

I7 @ I; = I, etc. Since the irreducible representations are all one-dimensional, the coupling constants of
product representations are trivial. Further, sincek = —k = 0 at the I" point and the condition in equation (2) is
satisfied by the irreducible representations, all irreducible representations belong to the case al [12].

4
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We are now in a position to write down the most general Hamiltonian for phospherene allowed by
symmetry. The result is

H=H;+ H,, (11)
He=H+ HE + HP + H™, (12)
Hi = ak] + axk} + Y agk?k} + ..., (13)

i<j
He = <61 + erk? + €3k;)€xx + (65 + eck’ + e7kf)€yy

+(€9+€10kf+€11k}%)€22+ vees (14)

HE = (C4 + Cskf + Cﬁk}%)Eﬁ + (Cg + Cgkjg + Clok}g)E;

+ (C12 + C13k3 + C14k}%)EZZ + ..., (15)

HB = b4kax + bSk},B},
+ (b7 + bgk? + bgkyz)Bf + (bu + biok? + blakf)Byz

+ (bis + biok? + bisk2) B2 + .., (16)

H™* = myByE ky + m3B,Eck, + ... (17)

Our intrinsic Hamiltonian agrees with the result of Li and Appelbaum [11].

3.Band structures

We now provide some discussion of the band structures that can be inferred from the Hamiltonians. We are also
more interested in revealing the properties analytically than purely numerically using DFT calculations.
However, preliminary calculations of the intrinsic band structures have been performed. The DFT-based
calculations were conducted using the projector augmented-wave method [15] and the PBE-GGA exchange-
correlation functional [16] as implemented in the VASP code [17-19]. The electronic wavefunctions were
described using a plane-wave basis set with an energy cutoff of 500 eV for silicene and 1200 eV for phosphorene.
Atomic positions were fully relaxed in I"-centered 25 x 25 X 1 for silicene (9 X 9 x 1 for phosphorene) supercells
for k-point sampling until residual forces were lower than 5 meV A™". For silicene, the lattice constant obtained
was 3.867 A. For phosphorene, the optimized lattice constants were 3.300 and 4.624 A. In both cases, a large
interlayer separation in the z direction was chosen (~30 A) to minimize interactions.

3.1. Silicene
We are mainly concerned with the doubly-degenerate Dirac band since the Fermi level crosses it; it is made of p,
and s orbitals from both atoms in the unit cell of silicene [2].

3.1.1. Intrinsic
For an arbitrary direction and keeping terms up to cubic in k, the band structure is given by diagonalizing the H;
Hamiltonian. Writingk? = k; + k f, one gets

E=ak®+ \/(al +ask?) K + aZk}(3k2 - k7). (18)

Thus, our equation above shows that the intrinsic band dispersion can have quadratic, cubic, ... terms in the
wave vector.

The a, coefficient is related to the Fermi velocity, a, is related to an effective mass, a4 gives rise to anisotropy,
and as leads to cubic terms. Alongthe K — I direction (k, = 0), the band structure simplifies to

E(k) = +ajk + Elzkz + a5k3. (19)

This reproduces the well-known result for graphene that the Fermi speed is the same for the two bands (figure 3,
left). Note that the anisotropy parameter a, is absent along this direction.

We have performed a cubic fit of the bands obtained using VASP up to about half-way from K. Rewriting
equation (19) as
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Figure 3. Left: band dispersion for silicene along the K to I" direction. Right: band dispersion for silicene along the K to M/2 direction.
The black line is keeping only the linear term.

Table 6. Band fitting for silicene along K to I".

Bl ve(10°ms™) B2 m* [ mo B3 y (VA
VB —0.040 6.43 —3.461 x 10~ —0.66 5.608 x 1076 6.65
CB 0.035 5.63 6.315 x 1074 0.36 —7.173 x 107° —-8.51
22 2
E(k) = /vpk + + 7k, (20)
2m*
and performinga fit to
y(n) = C+ (Bl)n + (B2)n? + (B3)n?, (21)
where 7 is chosen to be 100 points between K and G, we obtain (with Ak = (27)/(100+/3 ay))
B1
vp= —— = 4,188 X 10°%,Bl m s, 22
Gy 0 (22)
72Ak* 229 x 107
m* = = Mo, (23)
2B2 B2
3
B3 3 _
y =22 — 108 Y340\ pa 1 186 x 10983 VA, (24)
AK? 2r

and where we have used a, = 3.84 A.

The results of the curve fitting are given in table 6.

Figure 3 (right) shows the dispersion along K — M/2 (symbols). It can be seen that the linear dispersion
(line) is a good approximation only up to about a third of the way.

3.1.2. Strain
In the presence of strain, the Hamiltonian at the K point is given by

Hy = el(exx + eyy) + eye,, = Ale). (25)

First, we note that applying strain perpendicular to the plane (e,,) does not change the symmetry at the K point
and a zero gap is preserved but there is nevertheless an expected shift in the energy levels. Second, an in-plane
uniaxial strain (e.g., €4 ), while changing the symmetry, leads to the same energy change for both bands making
up the Dirac point since they both have the same deformation potential e;; thus, the only effect is a shift in
energies. Our analysis provides a formal resolution to the controversy from DFT calculations about whether a
gap is opened by a uniaxial strain or not [20-23]. Zhao and Mohan et al both predicted a gap opening [20, 21].
However, Qin etal [24] and Yang et al 23] did not obtain a gap and only obtained a shift of the Dirac point. The
latter interpreted the disagreement of Zhao to their using insufficient k points near the crossing. However, the
influence of strain does significantly change the dispersion at finite k values, i.e., in the Fermi velocity of those
bands.
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Figure 4. Left: two plots of dispersion relations near the K point for an applied electric field using the expression for H* in equation (8)
and linear in k. Parameter values are in arbitrary units: (top) a; = 1, ¢; = ¢4 = 1, ¢ = 2, E, = 1; (bottom)

ay=1, ¢ =c4=1, c¢ = 2,,E, = E; = 1.Right: the same with magnetic field instead: (top) a; = by = 1, B, = 1; (bottom)
a=b=1,b=058B,=1

For finite k and an arbitrary strain, one can also diagonalize the Hamiltonian to give
E(k, €) = A(e) (26)

, X 5 12
1{64[(€xx —e,)k, + Zex},kx] + [e;(exx + eyy) + e5€zz] (kf - kf)} .

3.1.3. Electric field
In the presence of an electric field, the Hamiltonian at the K point is given by

Hg = aE.); + &2 (E2 + E}) + ¢ E2. (27)

An electric field in the z-direction will change the symmetry for silicene (as opposed to graphene which has all
the atoms in the plane) and, therefore, a gap will open. Earlier DFT calculations have shown that the gap opening
is initially linear in the field (hence ¢; # 0) and later becomes nonlinear. This behaviour is reproduced by our
symmetry analysis. Indeed, by comparing to the DFT calculations of Drummond et al [25], one obtains

c1 = 0.037 eA. No existing calculations allow us to determine ¢, and c.

In figure 4 (left), dispersion plots are shown near the K point for an applied electric field E, = 1 (top, in
arbitrary units) and for E, = E, = 1 (bottom, in arbitrary units). Note that the plots are relative energies as they
do not include the solution of the equations in the y direction which requires numerically solving the Airy
equation.

3.1.4. Magnetic field
Finally, we present the behaviour of the energies in the presence of a magnetic field. First, the Hamiltonian linear
in the magnetic field is

HE = al(k},]x - kx]y) + bl(kyBx - kay) + byB,J,
+ b3(BxIx + By]y). (28)
Thus, at the K point, we have

Hg = byB.). + bs(B.J« + B,J, ). (29)
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Figure 5. Band structure of phosphorene. On the right is a close up of the highest valence band near the I" point.

Table 7. Effective masses (in units of 1) of the highest
valence and lowest conduction bands of phosphorene at
the I" point. The effective mass of the VB along I'Yis very
sensitive to the computation.

ry rx
CB 1.24 0.173
1.246 [27], 1.16 [28] 0.146 [27],0.22 28]
VB 7.2 ~0.160
3.24[28] —0.19[28]

Similarly to the electric field case, the magnetic-field problem is separable and only the soluble part is plotted in

figure 4.

3.2. Phosphorene
For phospherene, since the irreducible representations are all one dimensional, the Hamiltonians are the same as

the dispersion relations. Thus, the band structure is simpler to interpret. From equation (13), it can be seen that
(in the absence of spin—orbit interaction), only terms in even powers of k; are allowed. There is also an obvious
anisotropy in the effective mass due to the orthorhombic symmetry.

Our DFT calculations (figure 5) are consistent with others already published (e.g., [3, 10]). The gap is almost
directat the I" point and the GGA value is about 0.98 eV; Tran et al [26] have shown that a GW correction
increases the gap to 2.0 eV. We performed a fit to our DFT calculations (table 7).

While early calculations reported phosphorene to be a direct-gap semiconductor [3, 5], subsequent
calculations have revealed it to be slightly indirect [10, 11, 29] with an almost flat dispersion in the I'Y direction.
An interesting observation is the fact that some bands merge along the surface of the Brillouin zone, leading to

double degeneracy (even though the character tables of the group of wave vector only reveal one-dimensional
irreducible representations). The origin of the band sticking is the nonsymmorphic nature of the space

group [30].

3.2.1. Strain
We note that a number of DFT calculations of strained phosphorene have recently been reported [27—

29,31, 32], though all for large strains up to ~20%. The leading terms in the strain Hamiltonian are

HeE = (e1 + erk’ + e3kf)€xx + (es + egk? + e7ky2)6yy

+ (69 + elokf + e“kf)ezz + 613kxk),€xy. (30)

Atthe I" point, the energies are
Ei(é') = Ei + e1€ + €5€yy + e9€,, (31)

where E; are the band edges in the absence of strain. Contrary to the case for silicene, now a uniaxial strain in any
of the directions or a biaxial strain will change the size of the band gap if the deformation potentials for different
bands are different. The particular case of a perpendicular strain has recently been modeled by compressing the

8
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atoms within the unit cell in a DFT calculation and shown to lead to a possible semiconductor-metal transition
[10]. Feietal [27] found that a biaxial strain (about 4%) or a zigzag uniaxial strain (between 5 and 6%) can
change the order of the lowest two conduction bands.

For a finite wave vector, the total one-dimensional Hamiltonian is

H=E;(e) + (al + er€x + €€y + eloezz)kf

(612 + ez€y + €7€yy + 611€Zz)kf. (32)

3.2.2. Electric field
We note that, in contrast to both graphene and silicene, equation (15) shows that the band energies change
quadratically with an externally-applied electric field. At k=0, the band energies for a perpendicular field are

Er = E; + c;E. (33)
DFT results just published appear to confirm our prediction [28].

3.2.3. Magnetic field

In an external magnetic field, the one-band problem is exactly solvable in terms of the standard Landau level
problem. Thus, with a static magnetic field B = (0, 0, B,) with a vector potential A = (0, B,x, 0), the
Hamiltonian is given by [7]

P, 1 2
H=—+ (p + eBZx> . (34)
2m;  2my N
The eigenfunctions can be separated,
I .
f)= e™¢(x), (35)
y
and the eigenvalues are equidistant Landau levels
1
E, = (n + E)ﬁwc, (36)

where @, = B, / m;m,. Thus, the prediction is that, to the lowest order, a perpendicular magnetic field will
change the energy levels linearly.

4. Summary

The method of invariants was used to obtain analytical forms for the Hamiltonians and band structures of
silicene and phosphorene beyond the lowest order terms and in the presence of external fields. Differences in the
band structures of graphene, silicene and phosphorene are pointed out. Our method provides a formal analysis
thatis not possible from ab initio calculations. Specifically, some of the main conclusions derived from the
theory include

e anisotropy in the band structure of silicene shows up at the cubic order whereas they show up at the quadratic
level for graphene.

e anin-plane uniaxial strain does not open a gap for silicene.

e aperpendicular strain does not open a gap for silicene but would change the gap for phosphorene.

o tothelowest-order the energies levels of silicene change linearly with an external magnetic field and a
perpendicular electric field, whereas, for phosphorene, the energy levels change quadratically with a
perpendicular electric field and linearly with a perpendicular magnetic field.

Ab initio calculations for the intrinsic band structures are included and more extensive calculations with
external perturbations will be reported in a future publication.
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