270 research outputs found
Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis
Structural and magnetic properties of E-Fe_{1-x}Co_xSi thin films deposited via pulsed laser deposition
We report pulsed laser deposition synthesis and characterization of
polycrystalline Fe1-xCox Si thin films on Si (111). X-ray diffraction,
transmission electron, and atomic force microscopies reveal films to be dense,
very smooth, and single phase with a cubic B20 crystal structure.
Ferromagnetism with significant magnetic hysteresis is found for all films
including nominally pure FeSi films in contrast to the very weak paramagnetism
of bulk FeSi. For Fe1-xCoxSi this signifies a change from helimagnetism in
bulk, to ferromagnetism in thin films. These ferromagnetic thin films are
promising as a magnetic-silicide/silicon system for polarized current
production, manipulation, and detection.Comment: 12 pages, 4 figures accepted in the Applied Physics Letter
Ultrafast electronic processes in an insulator The Be and O sites in BeO
The short time dynamics of amorphous beryllium oxide a BeO has been investigated for electronic excitation ionization by fast incident electrons, as well as by Ar7 , Ar15 , Xe15 , and Xe31 ions at velocities of 6 10 the speed of light. Site specific Auger electron spectra induced by fast heavy ions are the central point of this investigation. Electron induced Auger spectra serve as a reference and electron energy loss EELS spectroscopy as well as resonant inelastic X ray scattering RIXS are invoked for quantitative understanding. For the heavy ion case, we observe strong variations in the corresponding spectral distributions of Be K and O K Auger lines. These are related to local changes of the electron density, of the electron temperature and even of the electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions
Recommended from our members
Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
Structural and magnetic properties of ε -Fe1-x Cox Si thin films deposited via pulsed laser deposition
We report pulsed laser deposition synthesis and characterization of polycrystalline Fe1-x Cox Si thin films on Si (111). X-ray diffraction, transmission electron, and atomic force microscopies reveal films to be dense, very smooth, and single phase with a cubic B20 crystal structure. Ferromagnetism with significant magnetic hysteresis is found for all films including nominally pure FeSi films in contrast to the very weak paramagnetism of bulk FeSi. For Fe1-x Cox Si this signifies a change from helimagnetism in bulk, to ferromagnetism in thin films. These ferromagnetic thin films are promising as a magnetic-silicide/silicon system for polarized current production, manipulation, and detection. © 2009 American Institute of Physics
Catalysis in Real Time Using X-Ray Lasers
We describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0001), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gas phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation
Point-of-Care Ultrasound for Tuberculosis Management in Sub-Saharan Africa-A Balanced SWOT Analysis.
Point-of-care ultrasound (POCUS) is an increasingly accessible skill, allowing for the decentralization of its use to non-specialist healthcare workers to guide routine clinical decision making. The advent of ultrasound-on-a-chip has transformed the technology into a portable mobile health device. Due to its high sensitivity to detect small consolidations, pleural effusions and sub pleural nodules, POCUS has recently been proposed as a sputum-free likely triage tool for tuberculosis (TB). To make an objective assessment of the potential and limitations of POCUS in routine TB management, we present a Strengths, Weaknesses, Opportunities & Threats (SWOT) analysis based on a review of the relevant literature and focusing on Sub-Saharan Africa (SSA). We idenitified numerous strengths and opportunities of POCUS for TB management e.g.; accessible, affordable, easy to use & maintain, expedited diagnosis, extra-pulmonary TB detection, safer pleural/pericardial puncture, use in children/pregnant women/PLHIV, targeted screening of TB contacts, monitoring TB sequelae, and creating AI decision support. Weaknesses and external threats such as operator dependency, lack of visualization of central lung pathology, poor specificity, lack of impact assessments and data from Sub-Saharan Africa must be taken into consideration to ensure that the potential of the technology can be fully realized in research as in practice
Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and \u3cem\u3eAb Initio\u3c/em\u3e Simulations
We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process
Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001)
We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell’Angela et al. Science 339 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process
- …