1,932 research outputs found
Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients.
Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols
Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNbO in a transverse field: Geometric frustration and quantum renormalization effects
The quasi-one-dimensional (1D) Ising ferromagnet CoNbO has recently
been driven via applied transverse magnetic fields through a continuous quantum
phase transition from spontaneous magnetic order to a quantum paramagnet, and
dramatic changes were observed in the spin dynamics, characteristic of weakly
perturbed 1D Ising quantum criticality. We report here extensive single-crystal
inelastic neutron scattering measurements of the magnetic excitations
throughout the three-dimensional (3D) Brillouin zone in the quantum
paramagnetic phase just above the critical field to characterize the effects of
the finite interchain couplings. In this phase, we observe that excitations
have a sharp, resolution-limited line shape at low energies and over most of
the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the
full bandwidth along the strongly dispersive chain direction and resolve clear
modulations of the dispersions in the plane normal to the chains,
characteristic of frustrated interchain couplings in an antiferromagnetic
isosceles triangular lattice. The dispersions can be well parametrized using a
linear spin-wave model that includes interchain couplings and further neighbor
exchanges. The observed dispersion bandwidth along the chain direction is
smaller than that predicted by a linear spin-wave model using exchange values
determined at zero field, and this effect is attributed to quantum
renormalization of the dispersion beyond the spin-wave approximation in fields
slightly above the critical field, where quantum fluctuations are still
significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and
figure
Neutron inelastic scattering investigation of the magnetic excitations in Cu_2Te_2O_5X_2 (X=Br, Cl)
Neutron inelastic scattering investigations have been performed on the spin
tetrahedral system Cu_2Te_2O_5X_2 (X = Cl, Br). We report the observation of
magnetic excitations with a dispersive component in both compounds, associated
with the 3D incommensurate magnetic order that develops below =18.2
K and =11.4 K. The excitation in Cu_2Te_2O_5Cl_2 softens as the
temperature approaches , leaving diffuse quasi-elastic scattering
above the transition temperature. In the bromide, the excitations are present
well above , which might be attributed to the presence of a degree
of low dimensional correlations above in this compound
Influence of static Jahn-Teller distortion on the magnetic excitation spectrum of PrO2: A synchrotron x-ray and neutron inelastic scattering study
A synchrotron x-ray diffraction study of the crystallographic structure of
PrO2 in the Jahn-Teller distorted phase is reported. The distortion of the
oxygen sublattice, which was previously ambiguous, is shown to be a chiral
structure in which neighbouring oxygen chains have opposite chiralities. A
temperature dependent study of the magnetic excitation spectrum, probed by
neutron inelastic scattering, is also reported. Changes in the energies and
relative intensities of the crystal field transitions provide an insight into
the interplay between the static and dynamic Jahn-Teller effects.Comment: 7 pages, 6 figure
Social Preferences, Skill Segregation and Wage Dynamics
We study the earning structure and the equilibrium asignment of workers to firms in a model in which workers have social preferences, and skills are perfectly substitutable in production. Firms offer long-term contracts, and we allow for frictions in the labour market in the form of mobility costs. The model delivers specific predictions about the nature of worker flows, about the characteristic of workplace skill segregation, and about wage dispersion both within and cross firms. We shows that long-term contracts in the resence of social preferences associate within-firm wage dispersion with novel "internal labour market" features such as gradual promotions, productivity-unrelated wage increases, and downward wage flexibility. These three dynamic features lead to productivity-unrelated wage volatily within firms.Publicad
Inelastic neutron scattering studies of Crystal Field Levels in PrOsAs
We use neutron scattering to study the Pr crystalline electric field
(CEF) excitations in the filled skutterudite PrOsAs. By comparing
the observed levels and their strengths under neutron excitation with the
theoretical spectrum and neutron excitation intensities, we identify the
Pr CEF levels, and show that the ground state is a magnetic
triplet, and the excited states ,
and are at 0.4, 13 and 23 meV, respectively. A comparison of the
observed CEF levels in PrOsAs with the heavy fermion superconductor
PrOsSb reveals the microscopic origin of the differences in the
ground states of these two filled skutterudites.Comment: 7 pages, 7 figure
- âŠ