258 research outputs found

    Laser decoating of DLC films for tribological applications

    Get PDF
    Damaged DLC coatings usually require remanufacturing of the entire coated components starting from an industrial chemical de-coating step. Alternatively, a complete or local coating repair can be considered. To pursue this approach, however, a local coating removal is needed as first operation. In this context, controlled decoating based on laser sources can be a suitable and clean alternative to achieve a pre-fixed decoating depth with high accuracy. In the present study, we investigated a laser-based decoating process executed on multilayered DLC films for advanced tribological applications (deposited via a hybrid PVD/PE-CVD technique). The results were acquired via multifocal optical digital microscopy (MF-ODM), which allowed high-resolution 3D surface reconstruction as well as digital profilometry of the lasered and unlasered surface. The study identifies the most critical process parameters which influence the effective decoating depth and the post-decoating surface roughness. In particular, the role of pulse overlap (decomposed along orthogonal directions), laser fluence, number of lasing passes and assist gas is discussed in text. A first experimental campaign was designed to identify the best conditions to obtain full decoating of the DLC + DLC:Cr layers. It was observed that decreasing the marking speed to 200 mm/s was necessary to obtain a sufficient pulse overlap and a nearly planar ablation profile. By operating with microsecond pulses and 1 J/cm2 (fairly above the ablation threshold), less than 10 passes were needed to obtain full decoating of the lasered area with an etching rate of 1.1 μm/loop. Further experiments were then executed in order to minimise the roughness of the rest surface with the best value found at around 0.2 μm. Limited oxidation but higher Ra values were observed in Ar atmosphere

    Molecular dynamics simulation of the effects of swift heavy ion irradiation on multilayer graphene and diamond-like carbon

    Get PDF
    As a promising material used in accelerators and in space in the future, it is important to study the property and structural changes of graphene and diamond-like carbon on the surface as a protective layer before and after swift heavy ion irradiation, although this layer could have a loose structure due to the intrinsic sp(2) surrounding environment of graphene during its deposition period. In this study, by utilizing inelastic thermal spike model and molecular dynamics, we simulated swift heavy ion irradiation and examined the track radius in the vertical direction, as well as temperature, density, and sp(3) fraction distribution along the radius from the irradiation center at different time after irradiation. The temperature in the irradiation center can reach over 11000 K at the beginning of irradiation while there would be a low density and sp(3) fraction area left in the central region after 100 ps. Ring analysis also demonstrated a more chaotic cylindrical region in the center after irradiation. After comprehensive consideration, diamond-like carbon deposited by 70 eV carbon bombardment provided the best protection.Peer reviewe

    Preparation and characterization of cubic boron nitride and carbon nitride films

    No full text
    Cubic boron nitride (c-BN) is a superhard material with a high potential for applications in different fields. At present c-BN films are being prepared mainly by VD or PVD techniques. These techniques as well as the different methods used characterize the films will be discussed. Theoretical considerations have shown that a superhard carbon nitride phase C3N4 with mechanical properties equivalent to or even better than those of diamond can exist. In recent years there were many attempts to prepare carbon nitride coatings by PVD or CVD techniques. An essential problem is the incorporation of sufficiently high concentrations of nitrogen in the films. A clear evidence of crystalline Beta-C3N4 phases in C-N films is outstanding so far

    History of diamond-like carbon films - from first experiments to worldwide applications

    No full text
    Diamond-like carbon (DLC) films combine several excellent properties like high hardness, low friction coefficients and chemical inertness. The DLC coating material can be further classified in two main groups, the hydrogenated amorphous carbon (a-C:H, ta-C:H) and the hydrogen free amorphous carbon (a-C, ta-C). By adding other elements like metals (a-C:H:Me) or non-metal elements like silicon, oxygen, fluorine or others (a-C:H:X), several modifications of the properties can be adjusted according to application requirements. First reports on hard amorphous carbon films were published in the 1950s and about 20 years later there began worldwide intensive research activities on DLC. In the following years the number of publications increased continuously and the importance for industrial applications became more and more evident. Several deposition techniques were applied to prepare a-C:H, ta-C, metal containing a-C:H:Me and non-metal containing a-C:H:X coatings. In parallel the structure and deposition mechanisms of DLC coatings were extensively studied. An essential obstacle for a broad industrial application was the high compressive stress level in a-C:H films causing delamination and limiting the film thicknesses. With metal based intermediate layer systems most adhesion problems could be solved satisfactorily and thus from the mid-1990s the pre-conditions for a broad application especially in the automotive industry were given. With modified a-C:H:X and a-C:X coatings a considerable friction reduction or surface energy adjustments could be achieved

    Kohlenstoffhaltige Schichten

    No full text
    corecore