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Theory of Ultrafast X-Ray Scattering

Theory of Ultrafast X-Ray Scattering by Molecules in the Gas Phase
Mats Simmermacher,1 Andrés Moreno Carrascosa,1 Niels E. Henriksen,2 Klaus B. Møller,2, a) and Adam
Kirrander1, b)
1)EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom.
2)Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark.

(Dated: 23 August 2019)

We recast existing theory of ultrafast time-resolved x-ray scattering by molecules in the gas phase based on first-order
time-dependent perturbation theory and quantum electrodynamics into a unified and coherent theoretical framework.
The effect of the detection window is analyzed in detail and the contributions to the total scattering signal are discussed.
This includes the coherent mixed component caused by interference between scattering amplitudes from different elec-
tronic states. A new detailed and fully converged simulation of ultrafast total x-ray scattering by excited H2 molecules
illustrates the theory and demonstrates that the inelastic component can contribute strongly, i.e. on the same order of
magnitude as the elastic component, to the total difference scattering signal.

I. INTRODUCTION

A century after von Laue and the Braggs were awarded No-
bel Prizes for x-ray diffraction from crystals1, novel sources of
x-rays permit experiments that their contemporaries could not
have imagined. The new X-ray Free-Electron Lasers (XFELs)
provide a peak brilliance more than 20 orders of magnitude
greater than conventional x-ray tubes.2–5 X-ray scattering is
therefore no longer confined to crystalline samples where
the scattering signal is enhanced by constructive interference
from a periodic lattice and experiments in the gas or liquid
phases are possible. Moreover, XFELs emit pulsed radiation
that allows for investigation of structural changes and chem-
ical reactions in real time.6–18 In one remarkable example of
these novel experiments, non-resonant scattering of hard x-
rays from the Linac Coherent Light Source2 was used to iden-
tify reaction paths of the electrocyclic ring-opening of 1,3-
cyclohexadiene to 1,3,5-hexatriene7,8, thus providing insights
into chemical reaction mechanisms that are complementary to
the information accessible from spectroscopy.13,19 It is likely
that the duration of pulses at XFELs will reduce further in the
near future20–24, making it possible to study even faster pro-
cesses such as the rearrangement of electrons during chemical
reactions.

In ultrafast x-ray scattering experiments a target molecule
interacts with two sequential pulses of electromagnetic radia-
tion, the pump and the probe. The pump pulse, normally gen-
erated by an optical laser, excites the molecule and thereby
induces dynamics such as photochemical reactions or photo-
physical relaxation. The probe pulse, which has a mean pho-
ton energy in the hard x-ray regime of several keV, is scat-
tered by the excited molecule onto a detector. By changing
the pump-probe delay time, the scattering signal is measured
at different points in time. The resulting series of snapshots
contains time-resolved information about the dynamics trig-
gered by the pump pulse.

Extracting information from the experimental data is non-
trivial. Inversion procedures that transform the scattering sig-

a)Electronic mail: kbmo@kemi.dtu.dk
b)Electronic mail: adam.kirrander@ed.ac.uk

nal directly into the electron density and thereby reveal the
molecular structure rely on rough approximations such as the
Independent Atom Model (IAM) and its underlying assump-
tion that the time-dependent signal is elastic.25–27 Inelastic
scattering that involves a transfer of energy between the pho-
tons and the molecule is only accounted for in a very approxi-
mate manner, if at all. The validity of these approximations
is not generally assured. The elastic and the inelastic sig-
nals are usually integrated on the detector and the inelastic
contribution cannot generally be assumed to be constant.28,29

The reorganization of the electron density due to bonding or
electronic excitation is furthermore not accounted for in the
framework of the IAM.30,31 A particularly dramatic failure
of the assumption that the time-dependent scattering signal
is elastic was demonstrated in a seminal paper by Dixit, Ven-
drell, and Santra, who showed that the scattering signal of an
electronic wave packet deviates substantially from the Fourier
transform of the time-dependent electron density.32 All of the
above emphasizes that time-resolved scattering experiments
must be accompanied by numerical simulations based on a
sound and elaborate theoretical framework.

Pioneering work that addressed the theoretical description
of time-resolved x-ray scattering was published by Wilson
et al. already in the 1990s.25,33,34 Without explicitly treating
the x-ray pulse and its interaction with the material system
in terms of electrodynamics, the authors extended the theory
of conventional static scattering to the case of time-dependent
states. Remarkably, their approach led to equations very sim-
ilar to those obtained by more recent and fundamental deriva-
tions. Most notably, Cao and Wilson25 could distinguish the
same three components to the scattering signal identified in
more recent work28,35–37: elastic scattering, inelastic scatter-
ing, and scattering related to electronic coherences.

In 2002, Bratos et al. discussed time-resolved x-ray scat-
tering by incorporating the x-ray pulse in terms of classi-
cal electrodynamics.38 Six years later, Henriksen and Møller
provided a fully quantized description that utilized quan-
tum electrodynamics39, an approach they elaborated further
in subsequent publications26,27,40 and which was adapted for
quantum molecular dynamics simulations by Kirrander et
al.41. The already mentioned paper by Dixit et al. had pro-
vided the first simulation of time-resolved x-ray scattering
that fully applied the quantum description to scattering by the
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Theory of Ultrafast X-Ray Scattering 2

hydrogen atom.32 In 2017, Mukamel and co-workers calcu-
lated the x-ray scattering signal of sodium fluoride follow-
ing UV excitation from the X Σ1 + ground state to the A Σ1 +

excited state35,37, showing that time-resolved x-ray scattering
can carry signatures of short-lived electronic coherences cre-
ated at the avoided crossing between the ground and excited
state. Their treatment, however, considered only the two elec-
tronic states occupied by the wave packet, meaning that in-
elastic scattering to other bound states was neglected, and the
scattering signal was reduced to a single dimension in recipro-
cal space. In a recent article28, we addressed these aspects and
investigated the role of electronic coherence further, reporting
an extensive simulation of scattering from a wave packet in
the hydrogen molecule.

Despite the advances made, it is clear that aspects of the
theory of time-resolved x-ray scattering remain opaque, as
exemplified by a recent debate regarding heterodyne interfer-
ences in the scattering signal of photoexcited molecules in the
gas phase.37,42–45 It is therefore necessary that the theory is
discussed in greater detail and that the nature of the different
contributions to the scattering signal are illustrated by simula-
tions. With this in mind, we elaborate the theoretical frame-
work for ultrafast scattering from molecules that was partially
applied in our previous work28, in particular with respect to
different detection window limits and total scattering. The
theory identifies the different components in the scattering
signal and key aspects are explained in detail. As a concrete
example of an application of the theory, a simulation of the
total scattering signal of the hydrogen molecule subsequent to
excitation from the X Σ1 +

g ground state to the B Σ1 +
u excited

state and for an x-ray pulse with 10 fs duration is presented.
All components of the total scattering signal are evaluated on
a two-dimensional detector and their magnitudes are quanti-
fied and compared. This provides insights that extend our own
previous work and the seminal contributions by Mukamel and
co-workers and will hopefully contribute to a more complete
understanding of time-resolved x-ray scattering by molecules.

II. THEORY

The time-resolved differential x-ray scattering signal
dσ/dΩ per solid angle Ω obtained using first-order pertur-
bation theory and a fully quantized description of the x-ray
pulse is39,40,

dσ

dΩ
=

(
dσ

dΩ

)
Th

∫∫∫
ωs

ω0
I(t)C(δ )eι(ω0−ωs)δ

×L(q, t,δ ) dδdωsdt,
(1)

where (dσ/dΩ)Th is the differential Thomson scattering
cross-section for a free electron, I(t) and C(δ ) are the pho-
ton number intensity and the linear coherence function of the
x-ray pulse with their corresponding times t and δ , and ω0
and ωs are the angular frequencies of the incident and scat-
tered x-ray photons, respectively. L(q, t,δ ) is the scattering
probability at point q in reciprocal space at times t and δ . It

is given by,

L(q, t,δ ) = 〈Ψ(t)|eιĤMδ/2h̄L̂†e−ιĤMδ/h̄L̂eιĤMδ/2h̄|Ψ(t)〉, (2)

where the bracket implies integration over all electronic r̄ =
(r1, . . . ,rNe) and nuclear R̄ = (R1, . . . ,RNat) coordinates.
Moreover, Eq. (2) contains the time-dependent wave function
|Ψ(t)〉, the molecular Hamiltonian ĤM, and the one-electron
scattering operator L̂ = ∑

Ne
n=1 exp(ιq ·rn), where ι is the

imaginary unit, h̄ = h/2π Planck’s constant, and q = k0−ks
the scattering vector in terms of the wave vectors of the in-
cident and the scattered photons, k0 and ks. The sum runs
over all Ne electrons of the molecule and rn is the real-space
coordinate of an electron with index n. We note that the pump-
probe delay time is contained within I(t) and that the effect of
the pump pulse is embedded in the propagation of the molec-
ular wave function |Ψ(t)〉.

The molecular wave function |Ψ(t)〉 in Eq. (2) can be ex-
panded in a basis of N electronic eigenstates |ϕk(R̄)〉 that de-
pend parametrically on the coordinates R̄ of the Nat nuclei
and obey the electronic Schrödinger equation Ĥe |ϕk(R̄)〉 =
Vk(R̄) |ϕk(R̄)〉 with eigenvalues Vk(R̄),

|Ψ(t)〉=
N

∑
k=1
|χk(t)〉 |ϕk(R̄)〉, (3)

where the time-dependent ket |χk(t)〉 is the nuclear wave
packet on electronic state k. It can be expressed as a time-
dependent superposition of rovibrational eigenstates of the
nuclear Schrödinger equation in the framework of the Born-
Oppenheimer approximation,

(
T̂N + Vk(R̄)

)
|χk̄〉 = Ek̄|χk̄〉

with k̄ =
{

k,νk,Jk
}

, where νk and Jk are the vibrational and
rotational quantum numbers, T̂N is the kinetic energy opera-
tor of the nuclei, and Ek̄ is the total energy of the molecule
in electronic state |ϕk(R̄)〉. With time-dependent coefficients
ak̄(t), the superposition is,

|χk(t)〉= ∑
νk

∑
Jk

ak̄(t) |χk̄〉. (4)

Insertion of the resolution of the identity in the direct prod-
uct basis of nuclear and electronic eigenstates,

1̂ =
∞

∑
k̄

|ϕk(R̄)〉|χk̄〉〈χk̄|〈ϕk(R̄)|, (5)

after each of the three exponential time-propagation operators
in Eq. (2), yields the scattering probability in terms of,

L(q, t,δ ) =
N

∑
i, j

∞

∑
νi,Ji

∞

∑
ν j ,J j

∞

∑
f̄

e−ιω f̄ ī j̄δ a∗j̄(t)aī(t)

×〈χ j̄| L
∗
f j(q,R̄) |χ f̄ 〉 〈χ f̄ | L f i(q,R̄) |χī〉,

(6)

where ω f̄ ī j̄ =
(
E f̄ − [Eī + E j̄]/2

)
/h̄ and the action of the

molecular Hamiltonian upon the nuclear and electronic eigen-
states is approximated adiabatically as,

e−
ι

h̄ ĤMδ |ϕk(R̄)〉|χk̄〉 ≈ e−
ι

h̄ Ek̄δ |ϕk(R̄)〉|χk̄〉. (7)
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Theory of Ultrafast X-Ray Scattering 3

We note that Eq. (7) is applied to the propagation in time δ

only and does not imply that the molecular wave packet itself
evolves adiabatically. The wave packet is propagated in time t
and non-adiabatic effects can thus be accounted for fully (see
also footnote46).

The scattering probability L(q, t,δ ) in Eq. (6) contains
scattering amplitudes given by one-electron scattering matrix
elements,

L f i(q,R̄) = 〈ϕ f (R̄)|L̂|ϕi(R̄)〉= 〈ϕi(R̄)|L̂†|ϕ f (R̄)〉∗, (8)

which are Fourier transformed expectation values of the one-
electron density operator, ρ̂(r) = ∑

Ne
n=1 δ (r− rn),47 where

the sum runs over all electronic coordinates of the molecule
and δ (r−rn) is a Dirac delta function that sifts out the elec-
tronic coordinate rn. The Fourier transform from real to re-
ciprocal space is,

L f i(q,R̄) =
∫ +∞

−∞

eιq·r
ρ f i(r,R̄) dr, (9)

with

ρ f i(r,R̄) = 〈ϕ f (R̄)|ρ̂(r)|ϕi(R̄)〉, (10)

which for f = i is the one-electron density (often just called
the electron density) and for f 6= i is the one-electron transi-
tion density.

Using the scattering probability from Eq. (6), the x-ray scat-
tering signal given by Eq. (1) becomes40,

dσ

dΩ
=

(
dσ

dΩ

)
Th

N

∑
i, j

∞

∑
νi,Ji

∞

∑
ν j ,J j

∞

∑
f̄

∫∫∫
ωs

ω0
I(t) a∗j̄(t) aī(t)

×C(δ ) e−ι(ωs−ω0+ω f̄ ī j̄)δ 〈χ j̄| L
∗
f j(q,R̄) |χ f̄ 〉

×〈χ f̄ | L f i(q,R̄) |χī〉 dδdωsdt.

(11)

The integral over δ in Eq. (11) is a Fourier transform of the
linear coherence function C(δ ) and equal to the spectral den-
sity at angular frequencies ωs−ω0 +ω f̄ ī j̄,

F
(
ωs−ω0 +ω f̄ ī j̄

)
=
∫ +∞

−∞

C(δ ) e−ι(ωs−ω0+ω f̄ ī j̄)δ dδ . (12)

Hence, Eq. (11) can be re-written as,

dσ

dΩ
=

(
dσ

dΩ

)
Th

N

∑
i, j

∞

∑
νi,Ji

∞

∑
ν j ,J j

∞

∑
f̄

∫∫
ωs

ω0
I(t) a∗j̄(t) aī(t)

×F
(
ωs−ω0 +ω f̄ ī j̄

)
〈χ j̄| L

∗
f j(q,R̄) |χ f̄ 〉

×〈χ f̄ | L f i(q,R̄) |χī〉 dωsdt,

(13)

Following the common approximation first introduced by
Waller and Hartree48, we can further assume that the differ-
ence in energy between the incident and scattered photon is
small compared to the mean photon energy of the x-ray pulse,
i.e. ωs ≈ ω0. Thus, the scattering vector q that generally de-
pends on both ω0 and ωs becomes independent of ωs and Eq.

(13) simplifies to,

dσ

dΩ
=

(
dσ

dΩ

)
Th

N

∑
i, j

∞

∑
νi,Ji

∞

∑
ν j ,J j

∞

∑
f̄

W f̄ ī j̄(∆ω)

×〈χ j̄| L
∗
f j(q̃,R̄) |χ f̄ 〉 〈χ f̄ | L f i(q̃,R̄) |χī〉

×
∫

I(t) a∗j̄(t) aī(t) dt,

(14)

where q̃ denotes a scattering vector that does not depend on ωs
and W f̄ ī j̄(∆ω) refers to the remaining integral over ωs which
acts as a window function,

W f̄ ī j̄(∆ω) =
∫

ω0+∆ω

ω0−∆ω

F
(
ωs−ω0 +ω f̄ ī j̄

)
dωs. (15)

The parameter ∆ω in Eq. (15) defines the detection window,
i.e. the range of angular frequencies around the mean ω0 that
are accepted by the detector. The parameter ∆ω has to be
significantly smaller than ω0 to ensure that the assumption
ωs ≈ ω0 is justified.

In the following, two different detection window limits as
well as their implications are discussed. We note that a similar
analysis of the effects of the window function was published
earlier by Dixit, Slowik, and Santra.49

A. Intermediate Detection Window

Considering that mean photon energies of several keV are
used in non-resonant x-ray scattering experiments, the detec-
tion window ∆ω can be much larger than the rovibrational
transition energies of the molecule. Under such conditions,
inelastic transitions to all nuclear eigenstates are detected with
equal weight and the window function becomes independent
of the rovibrational quantum numbers,

W f̄ ī j̄(∆ω)≈Wf i j(∆ω), (16)

where Wf i j(∆ω) depends only on the electronic energies. Eq.
(16) implies that ω f̄ ī j̄ involved in Eq. (15) can be replaced
by an angular frequency ω f i j =

(
Vf − [Vi +Vj]/2

)
/h̄ with Vf

the electronic energy of electronic state |ϕ f (R̄)〉. Since Eq.
(16) requires that differences on the order of the rovibrational
energies do not alter the window function, the precise value
of the electronic energies is not very important and a sensible
choice is Vf = Vf (R̄0), where R̄0 is the equilibrium geome-
try. Note that Eq. (16) retroactively justifies the adiabatic ap-
proximation made in Eq. (7). The non-adiabatic couplings of
the electronic and nuclear motion can be neglected when the
propagation in time δ is considered, since the choice of the
detection window ∆ω implies that the detector is not sensitive
to the resulting changes in photon energy.

Within the limit of the approximation embodied by Eq.
(16), the differential scattering signal in Eq. (14) simplifies
to,

dσ

dΩ
=

(
dσ

dΩ

)
Th

N

∑
i, j

∞

∑
f

Wf i j(∆ω)
∫

I(t)

×〈χ j(t)| L∗f j(q̃,R̄)L f i(q̃,R̄) |χi(t)〉 dt,

(17)
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Theory of Ultrafast X-Ray Scattering 4

where the three sums over the rovibrational eigenstates have
been eliminated using Eq. (4) and the resolution of the iden-
tity in the nuclear subspace, 1̂R̄ = ∑

∞
νk,Jk

|χk̄〉〈χk̄|. Eq. (17)
permits the identification of three different components in the
scattering signal,

dσ

dΩ
=

dσe

dΩ
+

dσi

dΩ
+

dσcm

dΩ
. (18)

First, if all indices are the same, i.e. if i = j = f , the scat-
tering signal will be elastic,

dσe

dΩ
=

(
dσ

dΩ

)
Th

W (∆ω)
N

∑
i

∫
I(t)

×〈χi(t)| |Lii(q̃,R̄)|2 |χi(t)〉 dt,

(19)

where the window function W (∆ω) is independent of the elec-
tronic state indices, since ω f i j = 0. Second, if i = j 6= f , the
scattering signal will be electronically inelastic,

dσi

dΩ
=

(
dσ

dΩ

)
Th

N

∑
i

∞

∑
f 6=i

Wf i(∆ω)
∫

I(t)

×〈χi(t)| |L f i(q̃,R̄)|2 |χi(t)〉 dt,

(20)

where Wf i(∆ω) depends on the angular frequency of the in-
elastic transition, ω f i =

(
Vf −Vi

)
/h̄. Third, if i 6= j, the scat-

tering signal will be what we call coherent mixed,

dσcm

dΩ
= 2

(
dσ

dΩ

)
Th

N−1

∑
i

N

∑
j>i

∞

∑
f

Wf i j(∆ω)
∫

I(t)

×Re
[
〈χ j(t)| L∗f j(q̃,R̄)L f i(q̃,R̄) |χi(t)〉

]
dt.

(21)

The coherent mixed component in Eq. (21) is caused by
intramolecular interference of scattering amplitudes from dif-
ferent electronic states, |ϕi(R̄)〉 and |ϕ j(R̄)〉, that have non-
zero population in the molecular wave packet given by Eq.
(3). The product of one-electron scattering matrix elements
in Eq. (21) is weighted by the product of the corresponding
nuclear wave packets, |χi(t)〉 and |χ j(t)〉, on each of the su-
perposed electronic states. The coherent mixed component is
therefore a direct probe of the degree of transient electronic
coherence or wave packet overlap, respectively.28,35,37 In sys-
tems that become decoherent within a few femtoseconds50,51,
the component will vanish accordingly. Moreover, the coher-
ent mixed scattering displays a rapid beating with a period of
T = h/∆Vi j, where ∆Vi j is the difference in energy of the two
superposed states at the time when the coherence is created.
The coherent mixed component will only be resolved if the
duration of the x-ray probe pulse described by I(t) is shorter
than this period.

B. Large Detection Window

A mean photon energy of several keV also permits a detec-
tion window ∆ω that is much larger than the electronic transi-
tion energies of the molecule without invalidating the approx-
imation ωs ≈ ω0. Under such conditions, inelastic transitions

to all electronic eigenstates are detected with equal weight and
the window function becomes generally independent of the
angular frequency ω f i j,

Wf i j(∆ω)≈W (∆ω). (22)

When Eq. (22) is valid, the differential scattering signal in
Eq. (17) simplifies further to,

dσ

dΩ
=

(
dσ

dΩ

)
Th

W (∆ω)

×
N

∑
i, j

∫
I(t) 〈χ j(t)| Λ ji(q̃,R̄) |χi(t)〉 dt,

(23)

where the infinite sum over the electronic eigenstates has been
eliminated by recognizing the resolution of the identity in the
electronic subspace, 1̂r̄ = ∑

∞
f |ϕ f (R̄)〉〈ϕ f (R̄)|. Eq. (23) con-

tains two-electron scattering matrix elements,

Λ ji(q̃,R̄) = 〈ϕ j(R̄)| ˆ̃L† ˆ̃L |ϕi(R̄)〉

=
Ne

∑
m,n
〈ϕ j(r)|eιq̃·(rn−rm)|ϕi(r)〉,

(24)

where ˆ̃L is the one-electron scattering operator that depends on
q̃. Since terms with m = n in Eq. (24) reduce to the Kronecker
delta δi j, the two-electron scattering matrix element can be
written as,

Λ ji(q̃,R̄) = Ne δi j +Λ
′
ji(q̃,R̄), (25)

where Λ′ji(q̃,R̄) is the pure two-electron part of Λ ji(q̃,R̄)
with m 6= n. Similarly to how the one-electron scattering ma-
trix element L f i(q,R̄) is related to the Fourier transformed
expectation value of the one-electron density operator by Eqs.
(9–10), Λ′ji(q̃,R̄) is a doubly Fourier transformed expecta-
tion value of the two-electron density operator, ρ̂(r1,r2) =
(1/2) ∑

N
m ∑

N
n6=m δ (r1−rm)δ (r2−rn),47

Λ
′
ji(q̃,R̄) = 2

∫∫ +∞

−∞

eιq̃·(r2−r1) ρ ji(r1,r2,R̄) dr1dr2, (26)

where

ρ ji(r1,r2,R̄) = 〈ϕ j(R̄)|ρ̂(r1,r2)|ϕi(R̄)〉. (27)

Analogous to Eq. (18) in the limit of the intermediate detec-
tion window, three distinct components of the scattering can
be identified in Eq. (23),

dσ

dΩ
=

dσbg

dΩ
+

dσ2e

dΩ
+

dσcm

dΩ
. (28)

The first contribution to Eq. (28) forms a constant background,

dσbg

dΩ
=

(
dσ

dΩ

)
Th

Ne W (∆ω) I, (29)

where I =
∫

I(t) dt is the integrated photon number inten-
sity of the x-ray pulse. This contribution originates from the
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Theory of Ultrafast X-Ray Scattering 5

first term of the two-electron scattering matrix element in Eq.
(25), Ne δi j, and corresponds to the scattering signal from Ne
free electrons. It reflects that from the perspective of an x-ray
photon an electron can move freely within the bound system
when all electronic transitions are allowed with equal weight.
Thus, dσbg/dΩ is a global, time-independent quantity that can
be subtracted from the total scattering signal without loss of
structural information. It is the one-electron part of the sum
of the elastic and inelastic components, Eqs. (19) and (20), in
the limit of a detection window that is much larger than the
electronic transition energies of the molecule.

The second contribution to Eq. (28) is the two-electron
component,

dσ2e

dΩ
=

(
dσ

dΩ

)
Th

W (∆ω)

×
N

∑
i

∫
I(t) 〈χi(t)| Λ′ii(q̃,R̄) |χi(t)〉 dt,

(30)

which originates from the two-electron scattering matrix ele-
ment in Eq. (25), Λ′ji(q̃,R̄), with i = j. As its name suggests,
it is the pure two-electron part of the sum of the elastic and
inelastic components in the limit of a large detection window.
It corresponds to what Waller and Hartree have termed excess
scattering.48 Since the one-electron part in Eq. (29) forms a
constant background, all structural information in Eq. (23) is
contained in dσ2e/dΩ. This shows, together with Eq. (26),
that total scattering by molecules in the gas phase measures
more than just the one-electron density, in marked contrast
to diffraction from crystalline matter which is predominantly
elastic and probes almost selectively the one-electron density.

Finally, the third contribution to Eq. (28) corresponds to the
previously discussed coherent mixed component,

dσcm

dΩ
= 2

(
dσ

dΩ

)
Th

W (∆ω)
N−1

∑
i

N

∑
j>i

×Re
[∫

I(t) 〈χ j(t)| Λ′ji(q̃,R̄) |χi(t)〉 dt
]

,

(31)

which stems from the element Λ′ji(q̃,R̄) with i 6= j and is the
coherent mixed component from Eq. (21) in the limit of a large
detection window. Note that this component will vanish if
the two electronic states, |ϕi(R̄)〉 and |ϕ j(R̄)〉, have different
inversion symmetry, i.e. if one state is gerade and the other
ungerade. This follows from the symmetry properties of the
two-electron scattering matrix element Λ′ji(q̃,R̄).40

Comparing the intermediate and large detection window
limits, the main difference between the coherent mixed com-
ponents with i 6= j is that the sum for the large window runs
over the occupied electronic states only, since the transitions
to all final states |ϕ f (R̄)〉 are accounted for implicitly. With
i = j, the elastic and inelastic components map onto the back-
ground and two-electron components. This is analogous to
how the elastic and inelastic components add up to the total
scattering29 in the situation where the coherent mixed compo-
nent vanishes due to either insufficient electronic coherence,
an incoherent x-ray pulse, or a lack of time-resolution.

III. SIMULATION

To illustrate the theory discussed in Section II, we present
a simulation of the ultrafast total x-ray scattering signal in the
limit of a large detection window by the hydrogen molecule in
a non-stationary state. This includes an analysis of the elastic
and inelastic components.

Initially, the molecule is in the electronic and vibrational
ground state X Σ1 +

g (ν = 0). It is excited by a transform-
limited Gaussian extreme ultraviolet (XUV) pulse centred at
t = 0 fs, that has a full-width half-maximum (FWHM) du-
ration of 25 fs and a mean photon energy of 14.3 eV. The
electric field amplitude of the pump pulse is 53.8 MV/cm,
which corresponds to a peak intensity of 7.69 TW/cm2. The
pump excites 10% of the population to the first excited elec-
tronic state, B1Σ+

u ← X Σ1 +
g (ν = 0). Two other transitions

that are accessible in principle, C Π1
u ← X Σ1 +

g (ν = 0) and
B′ Σ1 +

u ← X Σ1 +
g (ν = 0), are not included for the sake of sim-

plicity. The same parameters were applied in a previous
study28 and a similar wave packet has been probed experi-
mentally by strong-field dissociative ionization52.

The two-dimensional differential scattering signal dσ/dΩ

is simulated for coherent and transform-limited x-ray pulses
with a photon number intensity described by a normalized
Gaussian function,

I(t) =
1

σ
√

2π
e−

(t−τ)2

2σ2 , (32)

where τ is the pump-probe delay time and the pulse has a
duration of dx = 10 fs (FWHM), which corresponds to a stan-
dard deviation of σ = dx/(2

√
2ln2). The mean photon energy

of the pulse is h̄ω0 = 8.5 keV. It propagates in laboratory ẑ
direction, while the H–H bond of the hydrogen molecule is as-
sumed to be perfectly aligned with the laboratory x̂ axis. Ro-
tational wave packets are not considered. In accordance with
the limit of a large detection window defined by Eq. (22), it is
assumed that all inelastic transitions within the molecule are
contributing with equal weight, i.e. W (∆ω)≈ 1. The detection
window and the chosen pulse duration preclude a detection of
the coherent mixed component and the total signal is therefore
elastic and inelastic only.

A. Computational Details

The simulations include the first two electronic singlet
states of the hydrogen molecule, X Σ1 +

g and B Σ1 +
u . They

are calculated using state-average complete active space self-
consistent field SA-CASSCF(2,20)53/d-aug-cc-pVQZ54 in the
ab-initio software package MOLPRO55. The active space
contains the 20 energetically lowest-lying molecular orbitals.
The two states are computed for H–H bond lengths in the
range of 0.500 Å ≤ R ≤ 6.500 Å in steps of ∆R = 0.025 Å.
The molecular orbital coefficients and CI vectors are opti-
mized to convergence thresholds of 10−6 and stored for later
use when larger than 5× 10−5. Similarly, the one- and two-
electron density matrices in the basis of natural orbitals are
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Theory of Ultrafast X-Ray Scattering 6

calculated and stored.
From these two electronic states, all diagonal one- and

two-electron scattering matrix elements are computed using
our own scattering codes30,56,57. The evaluation of the two-
electron scattering matrix elements is based on the work of
Wang and Smith58, but does not involve the spherical aver-
age. Each of the resulting 964 matrix elements is evaluated on
a two-dimensional grid in the qx-qy plane that comprised 1210
points distributed across 19 equally spaced concentric circles
with one point at the origin. The scattering matrix elements
are interpolated to a smaller grid spacing of ∆R = 0.005 Å to
match the quantum dynamics simulation (see below).

The nuclear wave packet is propagated with the split-
operator method59 implemented in the WavePacket
program60. The initial wave packet is the vibrational
ground state, X Σ1 +

g (ν = 0), calculated with the Fourier
DVR method61. The wave packet is propagated from
t = −100.00 fs to t = 350.00 fs in time steps of ∆t = 0.01 fs
and the pump pulse described above is included explicitly
in the simulations. The dynamics on the potential energy
curve of the B Σ1 +

u state is adiabatic, since the non-adiabatic
coupling62 to the B′ Σ1 +

u state is insufficient to lead to
non-adiabatic population transfer. The simulation was
run on a regular spatial grid with H–H bond lengths of
0.500 Å ≤ R ≤ 6.500 Å with steps of ∆R = 0.005 Å. The
highly accurate benchmark potential energy curves63,64 and
transition dipole moments65 of Wolniewicz et al. are used in
the simulations.

With the electronic energies, the one- and two-electron scat-
tering matrix elements, and the nuclear wave packets at hand,
the total differential x-ray scattering signal and its elastic com-
ponents are calculated by means of Eqs. (28) to (31) and (19),
respectively. The inelastic component is obtained by subtrac-
tion of the elastic from the total signal. The integrals over t
and R are evaluated numerically by the trapezoidal rule. Dif-
ference scattering signals are obtained by subtraction of the
stationary ground state reference signal at τ = −100 fs (i.e.
pump on − pump off).

B. Results

The two calculated potential energy curves Vk(R) of the
X Σ1 +

g and the B Σ1 +
u states of the hydrogen molecule are

shown in Fig. 1. The curves are in close agreement with the
highly accurate benchmark data from Wolniewicz et al. 63,64.
They deviate by 48 meV and 49 meV at most and by 11 meV
and 30 meV on average, respectively. Considering further-
more that additional MRCI66–68 calculations performed at a
few representative values of R lead only to an insignificantly
better agreement, one can conclude that results are close to the
full-CI limit for the chosen basis set.

The nuclear density propagated on the adiabatic potential
energy curve of the excited B Σ1 +

u state, |χB(R, t)|2, is shown
in Fig. 2. At around t ≈ 0 fs and R ≈ 0.76 Å, a Franck-
Condon wave packet is excited from the ground state. Be-
cause the potential energy curve of B Σ1 +

u has a negative gra-
dient at that point, the wave packet accelerates towards larger

Figures/Fig1.pdf

FIG. 1. Adiabatic potential energy curves Vk(R) of the nine energeti-
cally lowest-lying electronic singlet states of the hydrogen molecule
at different H–H bond lengths R. The X Σ1 +

g and B Σ1 +
u states are cal-

culated with state-average CASSCF(2,20)/d-aug-cc-pVQZ and are
visually indistinguishable from the highly accurate benchmark data
of Wolniewicz et al.63,64. All energetically higher-lying states are
shown for orientation and are taken from of Wolniewicz et al.64,69–71.
The two states C Π1

u and I Π1
g are each doubly degenerate.

H–H bond lengths R. At t ≈ 31 fs, the wave packet reaches
the outer turning point with a maximum mean bond length
of 〈R〉 ≈ 5.18 Å. The wave packet then accelerates towards
smaller R and reaches the inner turning point with a mini-
mum mean bond length of 〈R〉 ≈ 2.33 Å at t ≈ 62 fs. After
that, the wave packet continues to oscillate between the inner
and outer turning points with a period of Tvib ≈ 62 fs. The
mean bond length 〈R〉 at the inner and outer turning points is
slightly increasing and decreasing over time, respectively, re-
flecting the gradual dispersion of the wave packet. Moreover,
the nodal structure in the density that becomes visible after
the first outer turning point reflects that the wave packet is vi-
brationally highly excited. The XUV pump pulse has enough
energy to excite vibrational eigenstates up to B Σ1 +

u (ν = 28).
The nuclear wave packet on X Σ1 +

g , in contrast, remains essen-
tially stationary with its population depleted by 10%.

Following Eqs. (19) and (30), the evolution of the nu-
clear densities |χX(R, t)|2 and |χB(R, t)|2 determine the time-
dependent changes in the elastic and inelastic components of
the total scattering signal. Detector images of the resulting
total difference scattering patterns (pump on − pump off) as
well as their elastic and inelastic components are shown in
Fig. 3 for three representative pump-probe delay times τ that
cover a full period of the nuclear oscillation. The scattering
intensities are given in units of the Thomson scattering cross-
section (dσ/dΩ)Th throughout.
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Theory of Ultrafast X-Ray Scattering 7

Figures/Fig2.pdf

FIG. 2. Contour plot of the simulated nuclear density |χB(R, t)|2
on the B Σ1 +

u state of the hydrogen molecule at different H–H bond
lengths R and times t. The nuclear wave packet χB(R, t) is pre-
pared by XUV laser excitation from the X Σ1 +

g (ν = 0) ground state.
The pump pulse is centred at t = 0 fs and has a duration of 25 fs
(FWHM), a mean photon energy of 14.3 eV, and a peak intensity of
7.69 TW/cm2. The final population in the B Σ1 +

u state is 10%.

The elastic difference scattering patterns in the top row of
Fig. 3 are practically identical to those presented in our pre-
vious work28, regardless that the x-ray pulse duration is two
orders of magnitude longer. The patterns are negative every-
where in the detector plane at all pump-probe delay times
τ . This reflects the fact that the one-electron density of the
B Σ1 +

u state is more diffuse than the one-electron density of
the ground state. In compliance with Friedel’s law, the elastic
patterns display a centrosymmetric D2 rosette group symme-
try. Each pattern has two symmetric minima on the horizontal
qx axis. At τ = Tvib, when χB(R, t) reaches its inner turn-
ing point first, the minima take a value of roughly −0.26 at
qx ≈±0.93 Å−1. At τ = (1/2) Tvib and τ = (3/2) Tvib, when
χB(R, t) reaches its outer turning point for the first and second
time, respectively, the minima decrease to −0.34 and move
closer to the origin to qx ≈ ±0.68 Å−1. These changes re-
veal that the one-electron density is shifted from the centre of
the molecule towards its periphery, thereby adjusting to the
increase of 〈R〉.

The inelastic difference scattering signals in the middle row
of Fig. 3 are completely positive and largest in the vicinity of
the qx-qy coordinates where the minima in the elastic patterns
appear. This reflects that a transition induced by an inelasti-
cally scattered x-ray photon is more likely to occur from the
B Σ1 +

u state than from the X Σ1 +
g ground state. Like the elas-

tic patterns, the inelastic ones are centrosymmetric and obey
Friedel’s law. Two symmetric maxima on the qx axis dominate

Figures/Fig3.pdf

FIG. 3. Detector images of the time-resolved difference scattering
patterns (pump on − pump off) for the elastic (top row) and inelastic
(middle row) components of the total scattering signal (bottom row)
simulated at three different pump-probe delay times τ . The delay
times correspond to the outer, inner, and outer turning points (left to
right) of the nuclear wave packet on the B Σ1 +

u state of the hydrogen
molecule with a vibrational period of Tvib ≈ 62 fs. The radial coor-
dinate of the detector takes values of 0≤ q≤ 4.31 Å−1. The patterns
are calculated for an x-ray pulse duration of dx = 10 fs (FWHM) and
a mean photon energy of h̄ω0 = 8.5 keV. The scattering intensity is
given in units of the Thomson scattering cross-section, (dσ/dΩ)Th.
The elastic patterns are practically identical to those calculated pre-
viously for a two orders of magnitude shorter x-ray pulse duration.28

the patterns. At τ = Tvib and qx ≈ ±0.87 Å−1, these maxima
are roughly 0.17. At τ = (1/2) Tvib and τ = (3/2) Tvib, the
maxima increase to approximately 0.21 and move closer to
the origin to qx ≈ ±0.64 Å−1. As before, these changes are
caused by the nuclear motion.

The fact that the inelastic component in Fig. 3 is calculated
by subtraction of the elastic from the total signal, not by solv-
ing the sum-over-states expression Eq. (20), implies that it is
intrinsically converged. In contrast to our previous work (see
Ref. 28), it is therefore possible to quantify the magnitude of
the inelastic component and to compare it to the elastic sig-
nal. Remarkably, the inelastic difference scattering is on the
same order of magnitude as the elastic. Its maxima amount to
more than 60% of the absolute minimum values of the corre-
sponding elastic patterns. This demonstrates clearly that the
inelastic component contributes significantly to the total dif-
ference scattering and cannot be neglected.

Finally, the total difference scattering patterns are shown
in the bottom row of Fig. 3. They are predominantly nega-
tive with only small positive signal at large values of q and at
angles around 0◦ or 180◦. Naturally, the patterns display the
same D2 rosette group symmetry as their elastic and inelas-
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Theory of Ultrafast X-Ray Scattering 8

tic components. Again, two symmetric minima on the qx axis
dominate. At τ = Tvib and qx ≈ ±1.05 Å−1, they are roughly
−0.09. At τ = (1/2) Tvib and τ = (3/2) Tvib, the minima de-
crease to approximately −0.14 and move closer to the origin
to qx ≈ ±0.80 Å−1. Due to the opposite signs of the elastic
and inelastic components and their comparable magnitudes,
the intensity of the total difference scattering is significantly
weaker than the pure elastic signal. The minima appear to be
only around 35% to 42% as strong. However, the contrast be-
tween the patterns at the inner and outer turning points is more
pronounced in the total scattering. The positions of the min-
ima are furthermore shifted by 0.12 Å−1 towards larger values
of q relative to the elastic signal. This shift is roughly half
as large as the shift that is caused by the nuclear dynamics.
These differences demonstrate again that the inelastic scatter-
ing adds to the time-dependent changes of the elastic compo-
nent and has to be considered.

In contrast to the case discussed in our previous work (see
Ref. 28), the total difference scattering patterns in Fig. 3 do
not display additional signatures of the coherent mixed com-
ponent given by Eq. (31). As already stated before, the large
detection window and the pulse duration of dx = 10 fs pre-
clude a detection of the coherent mixed signal. Due to the
relatively large separation of the potential energy curves of
the X Σ1 +

g and B Σ1 +
u states, the coherent mixed component

oscillates rapidly with a period of roughly 300 as and a sub-
femtosecond pulse would be required for its detection. More-
over, the coherent mixed component vanishes in the limit of
the large detection window defined by Eq. (22) because of the
different inversion symmetries of the two states.

C. Comment on the Independent Atom Model

With respect to the widely adapted IAM72,73, we note that
the model cannot provide a good approximation to the scat-
tering patterns presented in Fig. 3. It neither accounts for the
redistribution of the one-electron density as a result of the ex-
citation, which strongly affects the elastic component, nor for
any of the changes in the inelastic component.29 Though the
severity of the model’s failure is aggravated by the fact that
the hydrogen molecule has only two electrons and the IAM
can be expected to perform better when heavier elements are
involved, applications to excited molecules in the gas phase
should be met with caution. The IAM proved to approximate
the absolute scattering signal of stationary molecules reason-
ably well, but it is not guaranteed that the same holds for time-
dependent difference scattering signals. Even if the effect of
an electronic transition or alterations of the inelastic compo-
nent are small in terms of the absolute intensity, they may con-
tribute significantly to the changes isolated in the difference
scattering signal. This can perhaps be understood in analogy
to the role of electron correlation in quantum chemistry: it
amounts only to a small fraction of the total electronic energy,
but strongly affects the energy differences that are measured
in spectroscopy or in the dynamics of chemical reactions.

IV. SUMMARY AND CONCLUSION

To summarize, we present a theoretical description of ul-
trafast time-resolved x-ray scattering by molecules in the gas
phase based on first-order time-dependent perturbation the-
ory and quantum electrodynamics. We have recast existing
theory39,40 into a coherent and unified framework and ex-
plained several details and implications that were not yet fully
discussed in published literature. The effect of the detection
window is analyzed in detail and different contributions to
the scattering signal are identified. For intermediate detection
windows that do not allow for discrimination between differ-
ent rovibrational transitions, this consists of the elastic, the
electronically inelastic, and the coherent mixed components.
For larger detection windows that do not distinguish between
electronic transitions, the total x-ray scattering signal is split
into a one-electron, two-electron, and coherent mixed com-
ponent. We show that the one-electron component yields a
constant, global background, whereas all temporal and struc-
tural information is contained in the two-electron component,
i.e. the excess scattering of Waller and Hartree48. Since the
latter is related to the Fourier transform of the two-electron
density, we emphasize that time-resolved total x-ray scatter-
ing by molecules in the gas phase probes more than just the
one-electron density and thus provides information beyond
the molecular structure. This is in marked contrast to diffrac-
tion by crystalline matter, which measures predominantly the
Fourier transform of the one-electron density due to coherent
amplification of its elastic component.

The coherent mixed scattering is explained in the limit of
both intermediate and large detection windows and the con-
ditions necessary for its detection are specified. This further
elaborates the theoretical basis for our recent article on the
role of electronic coherence in time-resolved x-ray scatter-
ing by molecules.28 It is worth mentioning that the coherent
mixed component is caused by intramolecular interference of
scattering amplitudes from different electronic states coher-
ently occupied by the molecular wave packet, and should not
be confused with the heterodyne interferences that were re-
jected in a recent debate.37,43–45 Those erroneous heterodyne
terms were ascribed to interference between different elastic
scattering amplitudes or atomic form factors in an incoher-
ent superposition of states. The coherent mixed component
discussed herein always involves at least one electronically
inelastic scattering amplitude and can only be detected if the
molecule displays some degree of electronic coherence. An
incoherent superposition of states in a gas phase sample will
inevitably lead to a scattering signal that is purely elastic and
inelastic. The detection of heterodyne effects in x-ray scatter-
ing is possible only in diffraction by crystalline matter where
elastic scattering amplitudes of different atoms can interfere
periodically.43

We show simulations of two-dimensional time-resolved to-
tal scattering patterns from a hydrogen molecule excited from
the X Σ1 +

g (ν = 0) ground state to the B Σ1 +
u first excited state.

Both the elastic and the inelastic components are found to dis-
play strong signatures of the nuclear motion as well as of the
excitation to the B Σ1 +

u state. These signatures point towards
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Theory of Ultrafast X-Ray Scattering 9

the shortcomings of the widely adapted Independent Atom
Model, as discussed in Subsection III C.

Moreover, the coherent mixed component vanished as a
consequence of the limit of a large detection window and the
chosen x-ray pulse duration of dx = 10 fs (FWHM). The to-
tal scattering signal thus reduced to its elastic and inelastic
or one- and two-electron components, respectively. Note that
this contrasts with our preceding study (see Ref. 28) where the
assumed limit of an intermediate detection window and the
subfemtosecond pulse duration of dx = 100 as (FWHM) al-
lowed for a detection of the coherent mixed component. An
obvious continuation of the present work is to examine the
elastic, inelastic, and coherent mixed contributions in poly-
atomic molecules.

We also note that ultrafast electron diffraction is a
closely related experimental technique, both in terms of
observables74,75 and the physical nature of the scattering
process.56,76 Unsurprisingly, for sufficiently coherent electron
beams, directly analogous effects to the coherent mixed com-
ponent described in the current paper appear.77,78

The theory presented in this paper provides a concep-
tual framework that can be used to analyze existing and fu-
ture time-resolved non-resonant x-ray scattering experiments.
The framework is well aligned with the formalism required
to simulate photochemical and photophysical processes in
molecules in the gas-phase. In the condensed phase, a den-
sity matrix formalism might potentially be useful to include
relaxation processes25,37. Theory will indisputably aid the de-
velopment of novel experiments to exploit the vast potential
of XFELs for ultrafast science. This requires continued the-
oretical investigation, advanced numerical simulations, and
close collaboration between theoreticians and experimental-
ists to identify challenges on both sides.
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