33 research outputs found

    First-passage statistics of colloids on fractals: Theory and experimental realization

    Get PDF
    In nature and technology, particle dynamics frequently occur in complex environments, for example in restricted geometries or crowded media. These dynamics have often been modeled invoking a fractal structure of the medium although the fractal structure was only indirectly inferred through the dynamics. Moreover, systematic studies have not yet been performed. Here, colloidal particles moving in a laser speckle pattern are used as a model system. In this case, the experimental observations can be reliably traced to the fractal structure of the underlying medium with an adjustable fractal dimension. First-passage time statistics reveal that the particles explore the speckle in a self-similar, fractal manner at least over four decades in time and on length scales up to 20 times the particle radius. The requirements for fractal diffusion to be applicable are laid out, and methods to extract the fractal dimension are established

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated

    Get PDF
    PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction

    Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups

    Get PDF
    BACKGROUND: Choroid plexus tumors are intraventricular neoplasms derived from the choroid plexus epithelium. A better knowledge of molecular factors involved in choroid plexus tumor biology may aid in identifying patients at risk for recurrence. METHODS: Methylation profiles were examined in 29 choroid plexus papillomas (CPPs, WHO grade I), 32 atypical choroid plexus papillomas (aCPPs, WHO grade II), and 31 choroid plexus carcinomas (CPCs, WHO grade III) by Illumina Infinium HumanMethylation450 Bead Chip Array. RESULTS: Unsupervised hierarchical clustering identified 3 subgroups: methylation cluster 1 (pediatric CPP and aCPP of mainly supratentorial location), methylation cluster 2 (adult CPP and aCPP of mainly infratentorial location), and methylation cluster 3 (pediatric CPP, aCPP, and CPC of supratentorial location). In methylation cluster 3, progression-free survival (PFS) accounted for a mean of 72 months (CI, 55-89 mo), whereas only 1 of 42 tumors of methylation clusters 1 and 2 progressed (P< .001). On stratification of outcome data according to WHO grade, all CPCs clustered within cluster 3 and were associated with shorter overall survival (mean, 105 mo [CI, 81-128 mo]) and PFS (mean, 55 mo [CI, 36-73 mo]). The aCPP of methylation cluster 3 also progressed frequently (mean, 69 mo [CI, 44-93 mo]), whereas no tumor progression was observed in aCPP of methylation clusters 1 and 2 (P< .05). Only 1 of 29 CPPs recurred. CONCLUSIONS: Methylation profiling of choroid plexus tumors reveals 3 distinct subgroups (ie, pediatric low-risk choroid plexus tumors [cluster 1], adult low-risk choroid plexus tumors [cluster 2], and pediatric high-risk choroid plexus tumors [cluster 3]) and may provide useful prognostic information in addition to histopathology

    A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and databas

    Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated.

    Get PDF
    PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction
    corecore