3,290 research outputs found
Design and test of a prototype scale ejector wing
A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65
Assault on the NLO Wishlist: pp -> tt bb
We present the results of a next-to-leading order calculation of QCD
corrections to the production of an on-shell top-anti-top quark pair in
association with two flavored b-jets. Besides studying the total cross section
and its scale dependence, we give several differential distributions. Where
comparable, our results agree with a previous analysis. While the process under
scrutiny is of major relevance for Higgs boson searches at the LHC, we use it
to demonstrate the ability of our system built around Helac-Phegas to tackle
complete calculations at the frontier of current studies for the LHC. On the
technical side, we show how the virtual corrections are efficiently computed
with Helac-1Loop, based on the OPP method and the reduction code CutTools,
using reweighting and Monte Carlo over color configurations and polarizations.
As far as the real corrections are concerned, we use the recently published
Helac-Dipoles package. In connection with improvements of the latter, we give
the last missing integrated dipole formulae necessary for a complete
implementation of phase space restriction dependence in the massive dipole
subtraction formalism.Comment: 19 pages, 11 figures, 2 tables. References added, version to appear
in JHE
Non-Gaussian Geostatistical Modeling using (skew) t Processes
We propose a new model for regression and dependence analysis when addressing
spatial data with possibly heavy tails and an asymmetric marginal distribution.
We first propose a stationary process with marginals obtained through scale
mixing of a Gaussian process with an inverse square root process with Gamma
marginals. We then generalize this construction by considering a skew-Gaussian
process, thus obtaining a process with skew-t marginal distributions. For the
proposed (skew) process we study the second-order and geometrical
properties and in the case, we provide analytic expressions for the
bivariate distribution. In an extensive simulation study, we investigate the
use of the weighted pairwise likelihood as a method of estimation for the
process. Moreover we compare the performance of the optimal linear predictor of
the process versus the optimal Gaussian predictor. Finally, the
effectiveness of our methodology is illustrated by analyzing a georeferenced
dataset on maximum temperatures in Australi
Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft
http://dx.doi.org/10.1016/j.actaastro.2010.08.012This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decision logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the NAval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption
Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft
http://dx.doi.org/10.1016/j.actaastro.2010.08.012This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decision logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the NAval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption
Helac-nlo
Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program
that is capable of numerically evaluating QCD virtual corrections to scattering
amplitudes. A detailed presentation of the algorithm is given, along with
instructions to run the code and benchmark results. The program is part of the
HELAC-NLO framework that allows for a complete evaluation of QCD NLO
corrections.Comment: minor text revisions, version to appear in Comput.Phys.Commu
A QR based approach for the nonlinear eigenvalue problem
We describe a fast and numerically robust approach based on the structured QR eigenvalue algorithm for computing approximations of the eigenvalues of a holomorphic matrix-valued function inside the unit circle. Numerical experiments confirm the effectiveness of the proposed method
Estimation and prediction using generalized wendland covariance functions under fixed domain asymptotics
We study estimation and prediction of Gaussian random fields with covariance models belonging to the generalized Wendland (GW) class, under fixed domain asymptotics. As for the Matérn case, this class allows for a continuous parameterization of smoothness of the underlying Gaussian random field, being additionally compactly supported. The paper is divided into three parts: first, we characterize the equivalence of two Gaussian measures with GW covariance function, and we provide sufficient conditions for the equivalence of two Gaussian measures with Matérn and GW covariance functions. In the second part, we establish strong consistency and asymptotic distribution of the maximum likelihood estimator of the microergodic parameter associated to GW covariance model, under fixed domain asymptotics. The third part elucidates the consequences of our results in terms of (misspecified) best linear unbiased predictor, under fixed domain asymptotics. Our findings are illustrated through a simulation study: the former compares the finite sample behavior of the maximum likelihood estimation of the microergodic parameter with the given asymptotic distribution. The latter compares the finite-sample behavior of the prediction and its associated mean square error when using two equivalent Gaussian measures with Matérn and GW covariance models, using covariance tapering as benchmark
Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes
Understanding the impact of atmospheric dynamical variability on observed changes in stratospheric O<sub>3</sub> is a key to understanding how O<sub>3</sub> will change with future climate dynamics and trace gas abundances. In this paper we examine the linkage between interannual variability in total column O<sub>3</sub> at northern high latitudes in March and lower-to-mid stratospheric vortex O<sub>3</sub> in the prior November. We find that these two quantities are significantly correlated in the years available from TOMS, SBUV, and POAM data (1978-2004). Additionally, we find that the increase in March O<sub>3</sub> variability from the 1980s to years post-1990 is also seen in the November vortex O<sub>3</sub>, i.e., interannual variability in both quantities is much larger in the later years. The cause of this correlation is not clear, however. Interannual variations in March total O<sub>3</sub> are known to correspond closely with variations in winter stratospheric wave driving consistent with the effects of varying residual circulation, temperature, and chemical loss. Variation in November vortex O<sub>3</sub> may also depend on dynamical wave activity, but the dynamics in fall are less variable than in winter and spring. We do not find significant correlations of dynamic indicators for November such as temperature, heat flux, or polar average total O<sub>3</sub> with the November vortex O<sub>3</sub>, nor with dynamical indicators later in winter and spring that might lead to a connection to March. We discuss several potential hypotheses for the observed correlation but do not find strong evidence for any considered mechanism. We present the observations as a phenomenon whose understanding may improve our ability to predict the dependence of O<sub>3</sub> on changing dynamics and chemistry
- …