162 research outputs found

    Hospital-related costs of sepsis around the world:A systematic review exploring the economic burden of sepsis

    Get PDF
    Aim: The aim of this study was to examine the quality of manuscripts reporting sepsis health care costs and to provide an overview of hospital-related expenditures for sepsis in adult patients around the world. Methods: We systematically searched the PubMed, EMBASE, Cochrane and Google Scholar to identify relevant studies between January 2010 and January 2022. We selected articles that provided costs and cost-effectiveness analyses, defined sepsis and described their cost calculation method. All costs were adjusted to 2020 US dollars. Medians and interquartile ranges (IQRs) for various costs of sepsis were calculated. The quality of economic studies was assessed using the Drummond 10-item checklist. Results: Overall, 26 studies met our eligibility criteria. The mean total hospital costs per patient varied largely, between €1101 and €91,951. The median (IQR) of the total sepsis costs per country were €36,191 (€17,158 - €53,349), which equals €50 (€34 - €84) per capita annually. The relative amount of healthcare budget spent on sepsis was 2.65%, which equals 0.33% of the gross national product (GNP). Conclusion: While general sepsis costs are high, there is considerable variability between countries regarding the costs of sepsis. Further studies examining the impact on sepsis costs, especially on the general ward, can help justify, design and monitor initiatives on prevention, diagnosis, and treatment of this time-critical and potentially preventable disease

    Conversion of Verbal Response Scales: Robustness Across Demographic Categories

    Get PDF
    Happiness and life satisfaction have traditionally been measured using verbal response scales, however, these verbal scales have not kept up with the present trend to use numerical response scales. A switch from a verbal scale to a numerical scale, however, causes a severe problem for trend analyses, due to the incomparability of the old and new measurements. The Reference Distribution Method is a method that has been developed recently to deal with this comparison problem. In this method use is made of a reference distribution based on responses to a numerical scale which is used to decide at which point verbally labelled response options transit from one state to another, for example from ‘happy’ to ‘very happy’. Next, for each wave of the time series in which the verbal scale is used, a population mean is estimated for the beta distribution that fits best to these transition points and the responses in this wave. These estimates are on a level that is comparable to that of the mean of the reference distribution and are appropriate for use in an extended time series based on the responses measured using a verbal and a numerical scale. In this paper we address the question of whether the transition points derived for the general population can be used for demographic categories to produce reliable, extended time series to monitor differences in trends among these categories. We conclude that this is possible and that it is not necessary to derive transition points for each demographic category separately

    Restoring the infected powerhouse:Mitochondrial quality control in sepsis

    Get PDF
    Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.</p

    A 155-plex High-Throughput In Vitro Coregulator Binding Assay for (Anti-) Estrogenicity Testing Evaluated with 23 Reference Compounds

    Get PDF
    To further develop an integrated in vitro testing strategy for replacement of in vivo tests for (anti-)estrogenicity testing, the ligand-modulated interaction of coregulators with estrogen receptor a was assessed using a PamChip® plate. The relative estrogenic potencies determined, based on ERa binding to coregulator peptides in the presence of ligands on the PamChip® plate, were compared to the relative estrogenic potencies as determined in the in vivo uterotrophic assay. The results show that the estrogenic potencies predicted by the 57 coactivators on the peptide microarray for 18 compounds that display a clear E2 dose-dependent response (goodness of fit of a logistic dose-response model of 0.90 or higher) correlated very well with their in vivo potencies in the uterotrophic assay, i.e., coefficient of determination values for 30 coactivators higher than or equal to 0.85. Moreover, this coregulator binding assay is able to distinguish ER agonists from ER antagonists: profiles of selective estrogen receptor modulators, such as tamoxifen, were distinct from those of pure ER agonists, such as dienestrol. Combination of this coregulator binding assay with other types of in vitro assays, e.g., reporter gene assays and the H295R steroidogenesis assay, will frame an in vitro test panel for screening and prioritization of chemicals, thereby contributing to the reduction and ultimately the replacement of animal testing for (anti-)estrogenic effects

    Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    Get PDF
    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFbeta; receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFbeta; receptors did not clearly associate with chondrogenic induction. TGFbeta; increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFbeta;. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFbeta;-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFbeta;-induced chondrogenic differentiation of BMSCs, and TGFbeta; not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by mesenchymal stem cells will depend on activation of both receptors

    Cohort profile of Acutelines:a large data/biobank of acute and emergency medicine

    Get PDF
    Purpose Research in acute care faces many challenges, including enrolment challenges, legal limitations in data sharing, limited funding and lack of singular ownership of the domain of acute care. To overcome these challenges, the Center of Acute Care of the University Medical Center Groningen in the Netherlands, has established a de novo data, image and biobank named ‘Acutelines’.Participants Clinical data, imaging data and biomaterials (ie, blood, urine, faeces, hair) are collected from patients presenting to the emergency department (ED) with a broad range of acute disease presentations. A deferred consent procedure (by proxy) is in place to allow collecting data and biomaterials prior to obtaining written consent. The digital infrastructure used ensures automated capturing of all bed-side monitoring data (ie, vital parameters, electrophysiological waveforms) and securely importing data from other sources, such as the electronic health records of the hospital, ambulance and general practitioner, municipal registration and pharmacy. Data are collected from all included participants during the first 72 hours of their hospitalisation, while follow-up data are collected at 3 months, 1 year, 2 years and 5 years after their ED visit.Findings to date Enrolment of the first participant occurred on 1 September 2020. During the first month, 653 participants were screened for eligibility, of which 180 were approached as potential participants. In total, 151 (84%) provided consent for participation of which 89 participants fulfilled criteria for collection of biomaterials.Future plans The main aim of Acutelines is to facilitate research in acute medicine by providing the framework for novel studies and issuing data, images and biomaterials for future research. The protocol will be extended by connecting with central registries to obtain long-term follow-up data, for which we already request permission from the participant.Trial registration number NCT04615065

    Tentacle probe sandwich assay in porous polymer monolith improves specificity, sensitivity and kinetics

    Get PDF
    Nucleic acid sandwich assays improve low-density array analysis through the addition of a capture probe and a specific label, increasing specificity and sensitivity. Here, we employ photo-initiated porous polymer monolith (PPM) as a high-surface area substrate for sandwich assay analysis. PPMs are shown to enhance extraction efficiency by 20-fold from 2 μl of sample. We further compare the performance of labeled linear probes, quantum dot labeled probes, molecular beacons (MBs) and tentacle probes (TPs). Each probe technology was compared and contrasted with traditional hybridization methods using labeled sample. All probes demonstrated similar sensitivity and greater specificity than traditional hybridization techniques. MBs and TPs were able to bypass a wash step due to their ‘on–off’ signaling mechanism. TPs demonstrated reaction kinetics 37.6 times faster than MBs, resulting in the fastest assay time of 5 min. Our data further indicate TPs had the most sensitive detection limit (<1 nM) as well as the highest specificity (>1 × 104 improvement) among all tested probes in these experiments. By matching the enhanced extraction efficiencies of PPM with the selectivity of TPs, we have created a format for improved sandwich assays

    Rapid screening for chromosomal aneuploidies using array-MLPA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.</p> <p>Methods</p> <p>We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.</p> <p>Results</p> <p>In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.</p> <p>Conclusions</p> <p>Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.</p

    Protein-Tyrosine Kinase Activity Profiling in Knock Down Zebrafish Embryos

    Get PDF
    BACKGROUND: Protein-tyrosine kinases (PTKs) regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile significantly. Our results indicate that the novel peptide chip technology can be used to unravel kinase signaling pathways in vivo
    corecore