29 research outputs found

    An overview of the approaches for automotive safety integrity levels allocation

    Get PDF
    YesISO 26262, titled Road Vehicles–Functional Safety, is the new automotive functional safety standard for passenger vehicle industry. In order to accomplish the goal of designing and developing dependable automotive systems, ISO 26262 uses the concept of Automotive Safety Integrity Levels (ASILs), the adaptation of Safety Integrity Levels. ASILs are allocated to the components and subsystems that can cause system failure and malfunctions that lead to hazards. ASILs allocation is a hard problem consists of finding the optimal allocation of safety levels to the system architecture which must guarantee that the highest safety requirements are met while development cost of the automotive system is kept minimum. There were many successful attempts to solve this problem using different techniques. However, it is worth pointing out that there is an absence of a review that provides an in-depth study of all the existing methods and highlights their merits and demerits. This paper presents an overview of different approaches that were used to solve ASILs allocation problem. The review provides an overview of safety requirements including the related standards followed by a study of the resolution methods of the existing approaches. The study of each approach provides a detailed explanation of the used methodology and a discussion of its strength and weaknesses including the main open challenges

    New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates.

    Get PDF
    Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks

    Fire safety barrier availability analysis

    No full text
    This paper shows several ways to analyse the performance of a safety barrier, depending on the objective to be achieved and present a method to analyse binary components usually present on sensor systems of safety barriers. An application example of a water-based fire system is presented and the Probability of Failure on Demand (PFD) of the sensor system is determined based on the analysis of pressure switches installed in this safety barrier. The knowledge of such information will allow the determination of safety barrier’s availability

    Enhanced thermal confinement in phase-change memory targeting current reduction

    No full text
    International audienceIn this work, we present the extensive electrical characterization of 4kb Phase-Change Memory (PCM) arrays based on "Wall" structure and Ge-rich GeSbTe (GST) material, integrating a SiC dielectric with low thermal conductivity surrounding the heater element for enhanced cell thermal efficiency. We investigate the effects of the introduction of such dielectrics on the electrical performances of the device and we provide a promising path to achieve energy-efficient PCM cells supporting our results by electro-thermal TCAD simulations

    Grating writing in structured optical fibers

    Get PDF
    Grating writing in structured optical fibers is reviewed. Various laser sources have been used including UV and near IR nanosecond and femtosecond lasers, each enabling different material processing regimes. The issue of scattering is modeled through simulation and compared with experiment. Good agreement has been established
    corecore