87 research outputs found

    Pitfalls in the characterization of circulating and tissue-resident human γΎ T cells

    Get PDF
    Dissection of the role and function of human γΎ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γΎ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γΎ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γΎ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γΎ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles

    An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration

    No full text
    Abstract Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive?compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA

    White matter microstructure and its relation to clinical features of obsessive–compulsive disorder: findings from the ENIGMA OCD Working Group

    Get PDF
    Microstructural alterations in cortico-subcortical connections are thought to be present in obsessive–compulsive disorder (OCD). However, prior studies have yielded inconsistent findings, perhaps because small sample sizes provided insufficient power to detect subtle abnormalities. Here we investigated microstructural white matter alterations and their relation to clinical features in the largest dataset of adult and pediatric OCD to date. We analyzed diffusion tensor imaging metrics from 700 adult patients and 645 adult controls, as well as 174 pediatric patients and 144 pediatric controls across 19 sites participating in the ENIGMA OCD Working Group, in a cross-sectional case-control magnetic resonance study. We extracted measures of fractional anisotropy (FA) as main outcome, and mean diffusivity, radial diffusivity, and axial diffusivity as secondary outcomes for 25 white matter regions. We meta-analyzed patient-control group differences (Cohen’s d) across sites, after adjusting for age and sex, and investigated associations with clinical characteristics. Adult OCD patients showed significant FA reduction in the sagittal stratum (d = −0.21, z = −3.21, p = 0.001) and posterior thalamic radiation (d = −0.26, z = −4.57, p < 0.0001). In the sagittal stratum, lower FA was associated with a younger age of onset (z = 2.71, p = 0.006), longer duration of illness (z = −2.086, p = 0.036), and a higher percentage of medicated patients in the cohorts studied (z = −1.98, p = 0.047). No significant association with symptom severity was found. Pediatric OCD patients did not show any detectable microstructural abnormalities compared to controls. Our findings of microstructural alterations in projection and association fibers to posterior brain regions in OCD are consistent with models emphasizing deficits in connectivity as an important feature of this disorder

    Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters

    Get PDF
    No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker

    An approximate likelihood for nuclear recoil searches with XENON1T data

    Get PDF
    The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure

    Effective Field Theory and Inelastic Dark Matter Results from XENON1T

    Get PDF
    In this work, we expand on the XENON1T nuclear recoil searches to study theindividual signals of dark matter interactions from operators up todimension-eight in a Chiral Effective Field Theory (ChEFT) and a model ofinelastic dark matter (iDM). We analyze data from two science runs of theXENON1T detector totaling 1\,tonne×\timesyear exposure. For these analyses, weextended the region of interest from [4.9, 40.9] \,keVNR_{\text{NR}} to [4.9,54.4] \,keVNR_{\text{NR}} to enhance our sensitivity for signals that peak atnonzero energies. We show that the data is consistent with the background-onlyhypothesis, with a small background over-fluctuation observed peaking between20 and 50 \,keVNR_{\text{NR}}, resulting in a maximum local discoverysignificance of 1.7\,σ\sigma for the Vector⊗\otimesVectorstrange_{\text{strange}}(VVsVV_s) ChEFT channel for a dark matter particle of 70 \,GeV/c2^2, and1.8 σ1.8\,\sigma for an iDM particle of 50 \,GeV/c2^2 with a mass splitting of100 \,keV/c2^2. For each model, we report 90\,\% confidence level (CL) upperlimits. We also report upper limits on three benchmark models of dark matterinteraction using ChEFT where we investigate the effect of isospin-breakinginteractions. We observe rate-driven cancellations in regions of theisospin-breaking couplings, leading to up to 6 orders of magnitude weaker upperlimits with respect to the isospin-conserving case.<br

    Emission of single and few electrons in XENON1T and limits on light dark matter

    Get PDF
    Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons

    Low-energy Calibration of XENON1T with an Internal 37^{37}Ar Source

    Get PDF
    A low-energy electronic recoil calibration of XENON1T, a dual-phase xenontime projection chamber, with an internal 37^{37}Ar source was performed. Thiscalibration source features a 35-day half-life and provides two mono-energeticlines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keVare measured to be (32.3±\pm0.3) photons/keV and (40.6±\pm0.5) electrons/keV,respectively, in agreement with other measurements and with NEST predictions.The electron yield at 0.27 keV is also measured and it is(68.0−3.7+6.3^{+6.3}_{-3.7}) electrons/keV. The 37^{37}Ar calibration confirms thatthe detector is well-understood in the energy region close to the detectionthreshold, with the 2.82 keV line reconstructed at (2.83±\pm0.02) keV, whichfurther validates the model used to interpret the low-energy electronic recoilexcess previously reported by XENON1T. The ability to efficiently remove argonwith cryogenic distillation after the calibration proves that 37^{37}Ar can beconsidered as a regular calibration source for multi-tonne xenon detectors.<br

    Material radiopurity control in the XENONnT experiment

    Get PDF
    • 

    corecore