98 research outputs found

    Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge

    Get PDF
    Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5

    Urban vegetation extraction from VHR (tri-)stereo imagery : a comparative study in two central European cities

    Get PDF
    The present study proposes a workflow to extract vegetation height for urban areas from Pléiades stereo and tri-stereo satellite imagery. The workflow was applied on a stereo image pair for Szeged, Hungary and on tri-stereo imagery for Salzburg, Austria. Digital surface models (DSMs) of the study areas were computed using the semi-global matching algorithm. Normalised digital surface models (nDSMs) were then generated. Objects of vegetation and non-vegetation were delineated based on the spectral information of the multispectral images by applying multi-resolution segmentation and support vector machine classifier. Mean object height values were then computed from the overlaid pixels of the nDSMs and assigned to the objects. Finally, the delineated vegetation was classified into six vegetation height classes based on their assigned height values by using hierarchical classification. The vegetation discrimination resulted in very high accuracy, while the vegetation height extraction was moderately accurate. The results of the vegetation height extraction provided a vertical stratification of the vegetation in the two study areas which is readily applicable for decision support purposes. The elaborated workflow will contribute to a green monitoring and valuation strategy and provide input data for an urban green accessibility study.DK W 1237N23(VLID)251709

    Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs

    Get PDF
    Background: Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam 3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings: Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/ mL), Pam3Cys (160 ng/mL) or LPS (1 mg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1b, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2a) and Ptgs2. MALP-2 was more potent than Pam 3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam 3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs

    Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR) signaling and interleukin-1 receptor associated kinase-3 (IRAK-3) during experimental ventilator-induced lung injury.</p> <p>Methods</p> <p>Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (V<sub>T</sub>) (20 ml/kg) and low V<sub>T </sub>(6 ml/kg). Histological evaluation, TLR2, TLR4, <it>IRAK3 </it>gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IκBα), tumor necrosis factor-alpha (<it>TNF-α</it>) and interleukin-6 (<it>IL6</it>) gene expression in the lungs and TNF-α and IL-6 protein serum concentrations were analyzed.</p> <p>Results</p> <p>High V<sub>T </sub>mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of <it>IRAK3 </it>lung gene expression and protein levels, a significant decrease of IκBα, and a higher lung expression and serum concentrations of pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.</p

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

    Get PDF
    Background: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-jun-NH2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. Methodology and Principle Findings: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3-/-) or c-Jun-NH2-terminal kinase-1 (jnk1-/-) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3-/- or jnk1-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GAFF45α. Functional characterization of MMP8 revealed that mmp8-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. Conclusion: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage. © 2008 Dolinay et al

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
    • …
    corecore