6,032 research outputs found

    Radio-frequency probes of Antarctic ice at South Pole

    Get PDF
    Using hardware developed for the ARA (Askaryan Radio Array) particle astrophysics experiment, we herein report on the amplitude and temporal characteristics of polarized surface radar echo data collected in South Polar ice using radio sounding equipment with 0.5-ns echo-time sampling. We observe strong echoes at 6, 9.6, 13.9, 17, and 19 μs following vertical pulse emission from the surface, corresponding to reflectors in the upper half of the ice sheet. The synchronicity of those echoes for all broadcast azimuthal polarizations affirms the lack of observable birefringence over the upper half of the ice sheet. Of the five strongest echoes, three exhibit an evident amplitude correlation with the local surface ice flow direction, qualitatively consistent with measurements in East Antarctica. Combined with other radio echo sounding data, we conclude that observed birefringent asymmetries at South Pole are generated entirely in the lower half of the ice sheet. By contrast, birefringent asymmetries are observed at shallow depths in East Antarctica.The authors particularly thank Chris Allen and John Paden (University of Kansas), John Ralston (University of Kansas), Rebecca Boon (Pennsylvania State University), Joe MacGregor (University of Texas), and Kenny Matsuoka (Norwegian Polar Institute) for very helpful discussions, as well as our colleagues on the RICE and ANITA experiments. We also thank Andy Bricker of Lawrence High School (Lawrence, KS) for his assistance working with Lawrence High School students who performed essential antenna calibrations. This work was supported by the National Science Foundation’s Office of Polar Programs (grant OPP-0826747) and QuarkNet programs. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

    Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice"

    Full text link
    We reevaluate our published calculations of electromagnetic showers generated by GEANT 3.21 and the radio frequency pulses they produce in ice. We are prompted by a recent report showing that GEANT 3.21-modeled showers are sensitive to internal settings in the electron tracking subroutine. We report the shower and pulse characteristics obtained with different settings of GEANT 3.21 and with GEANT 4. The default setting of electron tracking in GEANT 3.21 we used in previous work speeds up the shower simulation at the cost of information near the end of the tracks. We find that settings tracking electron and positron to lower energy yield a more accurate calculation, a more intense shower, and proportionately stronger radio pulses at low frequencies. At high frequencies the relation between shower tracking algorithm and pulse spectrum is more complex. We obtain radial distributions of shower particles and phase distributions of pulses from 100 GeV showers that are consistent with our published results.Comment: 4 pages, 3 figure

    Length-dependent anisotropic scaling of spindle shape

    Get PDF
    Spindle length varies dramatically across species and during early development to segregate chromosomes optimally. Both intrinsic factors, such as regulatory molecules, and extrinsic factors, such as cytoplasmic volume, determine spindle length scaling. However, the properties that govern spindle shape and whether these features can be modulated remain unknown. Here, we analyzed quantitatively how the molecular players which regulate microtubule dynamics control the kinetics of spindle formation and shape. We find that, in absence of Clasp1 and Clasp2, spindle assembly is biphasic due to unopposed inward pulling forces from the kinetochore-fibers and that kinetochore-fibers also alter spindle geometry. We demonstrate that spindle shape scaling is independent of the nature of the molecules that regulate dynamic microtubule properties, but is dependent on the steady-state metaphase spindle length. The shape of the spindle scales anisotropically with increasing length. Our results suggest that intrinsic mechanisms control the shape of the spindle to ensure the efficient capture and alignment of chromosomes independently of spindle length

    Experimental and computational analysis of toughness anisotropy in an AA2139 Al-alloy for aerospace applications

    No full text
    International audienceFracture toughness anisotropy of AA2139 (Al-Cu-Mg) in T351 and T8 conditions has been investigated via mechanical testing of smooth and notched specimens of different geometries, loaded in the rolling direction (L) or in the transverse direction (T). Fracture mechanisms were investigated via SEM and synchrotron radiation computed tomography (SRCT). Contributions to failure anisotropy are identified with: (i) anisotropic initial void shape and growth, (ii) plastic behaviour including isotropic/kinematic hardening and plastic anisotropy, and (iii) nucleation at a 2nd population of 2nd phase particles leading to coalescence via narrow crack regions. A model based in part on the Gurson-Tvergaard-Needleman approach is constructed to describe and predict deformation behaviour, crack propagation and, in particular, toughness anisotropy. Model parameters are fitted using microstructural data and data on deformation and crack propagation for a range of small test samples. Its transferability has been shown by simulating tests of large M(T) samples

    Relativistic Magnetic Monopole Flux Constraints from RICE

    Get PDF
    We report an upper limit on the flux of relativistic monopoles based on the non-observation of in-ice showers by the Radio Ice Cherenkov Experiment (RICE) at the South Pole. We obtain a 95% C.L. limit of order 10^{-18}/(cm^2-s-sr) for intermediate mass monopoles of 10^7<gamma<10^{12} at the anticipated energy E=10^{16} GeV. This bound is over an order of magnitude stronger than all previously published experimental limits for this range of boost parameters gamma, and exceeds two orders of magnitude improvement over most of the range. We review the physics of radio detection, describe a Monte Carlo simulation including continuous and stochastic energy losses, and compare to previous experimental limits.Comment: 16 pages, 6 figures. Accepted for publication in Phys. Rev. D. Minor revisions, including expanded discussion of monopole energy uncertaint

    New limits for neutrinoless tau decays

    Get PDF
    Neutrinoless 3-prong tau lepton decays into a charged lepton and either two charged particles or one neutral meson have been searched for using 4.79fb^(-1) of data collected with the CLEO II detector at Cornell Electron Storage Ring. This analysis represents an update of a previous study and the addition of six decay channels. In all channels the numbers of events found are compatible with background estimates and branching fraction upper limits are set for 28 different decay modes. These limits are either more stringent than those set previously or represent the first attempt to find these decays

    Atomic structure and vibrational properties of icosahedral B4_4C boron carbide

    Full text link
    The atomic structure of icosahedral B4_4C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions to the stiffness we show that, contrary to recent conjectures, intra-icosahedral bonds are harder.Comment: 9 pages including 3 figures, accepted in Physical Review Letter

    Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    Full text link
    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mra
    • …
    corecore