1,328 research outputs found

    On the uniqueness of the surface sources of evoked potentials

    Full text link
    The uniqueness of a surface density of sources localized inside a spatial region RR and producing a given electric potential distribution in its boundary B0B_0 is revisited. The situation in which RR is filled with various metallic subregions, each one having a definite constant value for the electric conductivity is considered. It is argued that the knowledge of the potential in all B0B_0 fully determines the surface density of sources over a wide class of surfaces supporting them. The class can be defined as a union of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of the closed surfaces contains inside it another (nesting) of the closed or open surfaces.Comment: 16 pages, 5 figure

    Universal analytic properties of noise. Introducing the J-Matrix formalism

    Full text link
    We propose a new method in the spectral analysis of noisy time-series data for damped oscillators. From the Jacobi three terms recursive relation for the denominators of the Pad\'e Approximations built on the well-known Z-transform of an infinite time-series, we build an Hilbert space operator, a J-Operator, where each bound state (inside the unit circle in the complex plane) is simply associated to one damped oscillator while the continuous spectrum of the J-Operator, which lies on the unit circle itself, is shown to represent the noise. Signal and noise are thus clearly separated in the complex plane. For a finite time series of length 2N, the J-operator is replaced by a finite order J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different classes of input noise, such as blank (white and uniform), Gaussian and pink, are discussed in detail, the J-Matrix formalism allowing us to efficiently calculate hundreds of poles of the Z-transform. Evidence of a universal behaviour in the final statistical distribution of the associated poles and zeros of the Z-transform is shown. In particular the poles and zeros tend, when the length of the time series goes to infinity, to a uniform angular distribution on the unit circle. Therefore at finite order, the roots of unity in the complex plane appear to be noise attractors. We show that the Z-transform presents the exceptional feature of allowing lossless undersampling and how to make use of this property. A few basic examples are given to suggest the power of the proposed method.Comment: 14 pages, 8 figure

    An exploratory social network analysis of academic research networks

    Get PDF
    For several decades, academics around the world have been collaborating with the view to support the development of their research domain. Having said that, the majority of scientific and technological policies try to encourage the creation of strong inter-related research groups in order to improve the efficiency of research outcomes and subsequently research funding allocation. In this paper, we attempt to highlight and thus, to demonstrate how these collaborative networks are developing in practice. To achieve this, we have developed an automated tool for extracting data about joint article publications and analyzing them from the perspective of social network analysis. In this case study, we have limited data from works published in 2010 by England academic and research institutions. The outcomes of this work can help policy makers in realising the current status of research collaborative networks in England

    Lectures on the Asymptotic Expansion of a Hermitian Matrix Integral

    Full text link
    In these lectures three different methods of computing the asymptotic expansion of a Hermitian matrix integral is presented. The first one is a combinatorial method using Feynman diagrams. This leads us to the generating function of the reciprocal of the order of the automorphism group of a tiling of a Riemann surface. The second method is based on the classical analysis of orthogonal polynomials. A rigorous asymptotic method is established, and a special case of the matrix integral is computed in terms of the Riemann ζ\zeta-function. The third method is derived from a formula for the τ\tau-function solution to the KP equations. This method leads us to a new class of solutions of the KP equations that are \emph{transcendental}, in the sense that they cannot be obtained by the celebrated Krichever construction and its generalizations based on algebraic geometry of vector bundles on Riemann surfaces. In each case a mathematically rigorous way of dealing with asymptotic series in an infinite number of variables is established

    On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity

    Get PDF
    We have studied a model which has been proposed as a regularisation for four dimensional quantum gravity. The partition function is constructed by performing a weighted sum over all triangulations of the four sphere. Using numerical simulation we find that the number of such triangulations containing VV simplices grows faster than exponentially with VV. This property ensures that the model has no thermodynamic limit.Comment: 8 pages, 2 figure

    Matrices coupled in a chain. I. Eigenvalue correlations

    Full text link
    The general correlation function for the eigenvalues of pp complex hermitian matrices coupled in a chain is given as a single determinant. For this we use a slight generalization of a theorem of Dyson.Comment: ftex eynmeh.tex, 2 files, 8 pages Submitted to: J. Phys.

    Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains

    Full text link
    Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. For the other sequence, the perturbation is relevant and the critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4 postcript figure

    Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable

    Full text link
    In the quantization scheme which weakens the hermiticity of a Hamiltonian to its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and Coulomb potentials is defined at the purely imaginary effective charges (Ze^2=if) and regularized by a purely imaginary shift of x. This model is quasi-exactly solvable: We show that at each excited, (N+1)-st harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic oscillator bound state (at the vanishing charge f=0) but also a normalizable (N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge

    Corrections to Sirlin's Theorem in O(p6)O(p^6) Chiral Perturbation Theory

    Get PDF
    We present the results of the first two-loop calculation of a form factor in full SU(3)×SU(3)SU(3) \times SU(3) Chiral Perturbation Theory. We choose a specific linear combination of π+,K+,K0\pi^+, K^+, K^0 and KπK\pi form factors (the one appearing in Sirlin's theorem) which does not get contributions from order p6p^6 operators with unknown constants. For the charge radii, the correction to the previous one-loop result turns out to be significant, but still there is no agreement with the present data due to large experimental uncertainties in the kaon charge radii.Comment: 6 pages, Latex, 2 LaTeX figure
    corecore