1,328 research outputs found
Mycobacterium ulcerans disease (Buruli ulcer) in Mali, a new potential African endemic country
International audienc
On the uniqueness of the surface sources of evoked potentials
The uniqueness of a surface density of sources localized inside a spatial
region and producing a given electric potential distribution in its
boundary is revisited. The situation in which is filled with various
metallic subregions, each one having a definite constant value for the electric
conductivity is considered. It is argued that the knowledge of the potential in
all fully determines the surface density of sources over a wide class of
surfaces supporting them. The class can be defined as a union of an arbitrary
but finite number of open or closed surfaces. The only restriction upon them is
that no one of the closed surfaces contains inside it another (nesting) of the
closed or open surfaces.Comment: 16 pages, 5 figure
Universal analytic properties of noise. Introducing the J-Matrix formalism
We propose a new method in the spectral analysis of noisy time-series data
for damped oscillators. From the Jacobi three terms recursive relation for the
denominators of the Pad\'e Approximations built on the well-known Z-transform
of an infinite time-series, we build an Hilbert space operator, a J-Operator,
where each bound state (inside the unit circle in the complex plane) is simply
associated to one damped oscillator while the continuous spectrum of the
J-Operator, which lies on the unit circle itself, is shown to represent the
noise. Signal and noise are thus clearly separated in the complex plane. For a
finite time series of length 2N, the J-operator is replaced by a finite order
J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different
classes of input noise, such as blank (white and uniform), Gaussian and pink,
are discussed in detail, the J-Matrix formalism allowing us to efficiently
calculate hundreds of poles of the Z-transform. Evidence of a universal
behaviour in the final statistical distribution of the associated poles and
zeros of the Z-transform is shown. In particular the poles and zeros tend, when
the length of the time series goes to infinity, to a uniform angular
distribution on the unit circle. Therefore at finite order, the roots of unity
in the complex plane appear to be noise attractors. We show that the
Z-transform presents the exceptional feature of allowing lossless undersampling
and how to make use of this property. A few basic examples are given to suggest
the power of the proposed method.Comment: 14 pages, 8 figure
An exploratory social network analysis of academic research networks
For several decades, academics around the world have been collaborating with the view to support the development of their research domain. Having said that, the majority of scientific and technological policies try to encourage the creation of strong inter-related research groups in order to improve the efficiency of research outcomes and subsequently research funding allocation. In this paper, we attempt to highlight and thus, to demonstrate how these collaborative networks are developing in practice. To achieve this, we have developed an automated tool for extracting data about joint article publications and analyzing them from the perspective of social network analysis. In this case study, we have limited data from works published in 2010 by England academic and research institutions. The outcomes of this work can help policy makers in realising the current status of research collaborative networks in England
Lectures on the Asymptotic Expansion of a Hermitian Matrix Integral
In these lectures three different methods of computing the asymptotic
expansion of a Hermitian matrix integral is presented. The first one is a
combinatorial method using Feynman diagrams. This leads us to the generating
function of the reciprocal of the order of the automorphism group of a tiling
of a Riemann surface. The second method is based on the classical analysis of
orthogonal polynomials. A rigorous asymptotic method is established, and a
special case of the matrix integral is computed in terms of the Riemann
-function. The third method is derived from a formula for the
-function solution to the KP equations. This method leads us to a new
class of solutions of the KP equations that are
\emph{transcendental}, in the sense that they cannot be obtained by the
celebrated Krichever construction and its generalizations based on algebraic
geometry of vector bundles on Riemann surfaces. In each case a mathematically
rigorous way of dealing with asymptotic series in an infinite number of
variables is established
On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity
We have studied a model which has been proposed as a regularisation for four
dimensional quantum gravity. The partition function is constructed by
performing a weighted sum over all triangulations of the four sphere. Using
numerical simulation we find that the number of such triangulations containing
simplices grows faster than exponentially with . This property ensures
that the model has no thermodynamic limit.Comment: 8 pages, 2 figure
Matrices coupled in a chain. I. Eigenvalue correlations
The general correlation function for the eigenvalues of complex hermitian
matrices coupled in a chain is given as a single determinant. For this we use a
slight generalization of a theorem of Dyson.Comment: ftex eynmeh.tex, 2 files, 8 pages Submitted to: J. Phys.
Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains
Log-periodic amplitudes of the surface magnetization are calculated
analytically for two Ising quantum chains with aperiodic modulations of the
couplings. The oscillating behaviour is linked to the discrete scale invariance
of the perturbations. For the Fredholm sequence, the aperiodic modulation is
marginal and the amplitudes are obtained as functions of the deviation from the
critical point. For the other sequence, the perturbation is relevant and the
critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4
postcript figure
Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable
In the quantization scheme which weakens the hermiticity of a Hamiltonian to
its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and
Coulomb potentials is defined at the purely imaginary effective charges
(Ze^2=if) and regularized by a purely imaginary shift of x. This model is
quasi-exactly solvable: We show that at each excited, (N+1)-st
harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic
oscillator bound state (at the vanishing charge f=0) but also a normalizable
(N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at
eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest
multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge
Corrections to Sirlin's Theorem in Chiral Perturbation Theory
We present the results of the first two-loop calculation of a form factor in
full Chiral Perturbation Theory. We choose a specific
linear combination of and form factors (the one
appearing in Sirlin's theorem) which does not get contributions from order
operators with unknown constants. For the charge radii, the correction to
the previous one-loop result turns out to be significant, but still there is no
agreement with the present data due to large experimental uncertainties in the
kaon charge radii.Comment: 6 pages, Latex, 2 LaTeX figure
- …
