4 research outputs found

    Phenotypic spectrum of fetal Smith-Lemli-Opitz syndrome.

    Get PDF
    International audienceThe Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital malformation syndrome caused by dehydrocholesterol reductase deficiency. The diagnosis is confirmed by high 7- and secondarily 8-dehydrocholesterol levels in plasma and tissues and/or by detection of biallelic mutations in the DHCR7 gene. The phenotypic spectrum of SLOS is broad, ranging from a mild phenotype combining subtle physical anomalies with behavioral and learning problems, to a perinatally lethal multiple malformations syndrome. The fetal phenotype of SLOS has been poorly described in the literature. We report a series of 10 fetuses with molecularly proven SLOS. Even in young fetuses, the facial dysmorphism appears characteristic. Genital abnormalities are rare in 46,XX subjects. Gonadal differentiation appears histologically normal and in agreement with the chromosomal sex, contrary to what has been previously stated. We observed some previously unreported anomalies: ulnar hypoplasia, vertebral segmentation anomalies, congenital pulmonary adenomatoid malformation, fused lungs, gastroschisis, holomyelia and hypothalamic hamartoma. This latter malformation proves that SLOS phenotypically overlaps with Pallister-Hall syndrome which remains clinically a major differential diagnosis of SLOS

    Matthew-Wood Syndrome Is Caused by Truncating Mutations in the Retinol-Binding Protein Receptor Gene STRA6

    Get PDF
    Retinoic acid (RA) is a potent teratogen in all vertebrates when tight homeostatic controls on its endogenous dose, location, or timing are perturbed during early embryogenesis. STRA6 encodes an integral cell-membrane protein that favors RA uptake from soluble retinol-binding protein; its transcription is directly regulated by RA levels. Molecular analysis of STRA6 was undertaken in two human fetuses from consanguineous families we previously described with Matthew-Wood syndrome in a context of severe microphthalmia, pulmonary agenesis, bilateral diaphragmatic eventration, duodenal stenosis, pancreatic malformations, and intrauterine growth retardation. The fetuses had either a homozygous insertion/deletion in exon 2 or a homozygous insertion in exon 7 predicting a premature stop codon in STRA6 transcripts. Five other fetuses presenting at least one of the two major signs of clinical anophthalmia or pulmonary hypoplasia with at least one of the two associated signs of diaphragmatic closure defect or cardiopathy had no STRA6 mutations. These findings suggest a molecular basis for the prenatal manifestations of Matthew-Wood syndrome and suggest that phenotypic overlap with other associations may be due to genetic heterogeneity of elements common to the RA- and fibroblast growth factor–signaling cascades

    Mutations in FLVCR2 Are Associated with Proliferative Vasculopathy and Hydranencephaly-Hydrocephaly Syndrome (Fowler Syndrome)

    Get PDF
    Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH), also known as Fowler syndrome, is an autosomal-recessively inherited prenatal lethal disorder characterized by hydranencephaly; brain stem, basal ganglia, and spinal cord diffuse clastic ischemic lesions with calcifications; glomeruloid vasculopathy of the central nervous system and retinal vessels; and a fetal akinesia deformation sequence (FADS) with muscular neurogenic atrophy. To identify the molecular basis for Fowler syndrome, we performed autozygosity mapping studies in three consanguineous families. The results of SNP microarrays and microsatellite marker genotyping demonstrated linkage to chromosome 14q24.3. Direct sequencing of candidate genes within the target interval revealed five different germline mutations in FLVCR2 in five families with Fowler syndrome. FLVCR2 encodes a transmembrane transporter of the major facilitator superfamily (MFS) hypothesized to be involved in regulation of growth, calcium exchange, and homeostasis. This is the first gene to be associated with Fowler syndrome, and this finding provides a basis for further studies to elucidate the pathogenetic mechanisms and phenotypic spectrum of associated disorders
    corecore