475 research outputs found

    Finite volume analysis of reinforced concrete structure cracking using a thermo-plastic-damage model

    Get PDF
    This paper proposes modifications to the phenomenological model formulation called CDPM2, developed by Grassl et al. [1]. The proposed modifications are designed to enhance model performance with coupling to temperature effects. A very strong coupling between nonlinear elasticity, plasticity, nonlocal damage evolution and temperature gradient is used to simulate arbitrary crack propagation. The use of FVM to model solid damage is a numerical challenge. This approach presents some advantages such as: ensuring that discretization is conservative even when the geometry is changing; providing a simple formulation that can be obtained directly from a difference method; and employing unstructured meshes. Most authors have neglected the nonlinearity of concrete in the elastic domain from the start of loading to the plastic domain. In this paper we confirm that concrete rheology is not linear even under low loading. Also, since the so-called fracture energy is a key parameter needed to determine the size of cracks and how they propagate in space, we consider that the fracture energy is both material and geometrical parameter dependent. For this reason, we developed a new approach which includes adaptive mesh, nonlinear rheology and thermal effects to re-calculate fracture energy at each time step. Many authors use a constant value obtained from experiments to calculate fracture energy; others use a numerical correlation. In this study, the fracture energy parameter is not constant and can vary with temperature or/and with a change in geometry due to concrete failure. As is well known, the mesh quality of complex geometries is very important for making accurate predictions. A new meshing tool was developed using the C++ programming language. This tool is faster, more accurate and produces a high-quality structured mesh. The predictions obtained were compared to a wide variety of experimental data and showed good agreement

    Renal function, calcium regulation, and time to hospitalization of patients with chronic kidney disease

    Get PDF
    BACKGROUND: Chronic kidney disease is associated with disruption of the endocrine system that distorts the balance between calcitriol, calcium, phosphate and parathyroid hormone in the calcium regulation system. This can lead to calcification of the arterial tree and increased risk of cardiovascular disease and death. In this study we develop a health metric, based on biomarkers involved in the calcium regulation system, for use in identifying patients at high risk for future high-cost complications. METHODS: This study is a retrospective observational study involving a secondary analysis of data from the kidney disease registry of a regional managed care organization. Chronic kidney disease patients in the registry from November 2007 through November 2011 with a complete set of observations of estimated glomerular filtration rate, calcitriol, albumin, free calcium, phosphate, and parathyroid hormone were included in the study (n = 284). Weibull regression model was used to identify the most significant lab tests in predicting “waiting time to hospitalization”. A multivariate linear path model was then constructed to investigate direct and indirect effects of the biomarkers on this outcome. RESULTS: The results showed negative significant direct effects of phosphate and parathyroid hormone on “waiting time to hospitalization”. Base on this result, the risk of hospitalization increases 16.8% for each 0.55 mg/dl increase in phosphate level and 13.5% for each 0.467 increase in the natural logarithm of parathyroid hormone. Positive indirect effects of calcitriol surrogate (calcidiol), free calcium, albumin and estimated glomerular filtration rate were observed but were relatively small in magnitude. CONCLUSION: Variables involved in the calcium regulation system should be included in future efforts to develop a quality of care index for Chronic Kidney disease patients

    Space suit

    Get PDF
    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space

    PMS74 Use of Disease-Modifying Anti-Rheumatic Drugs for Rheumatoid Arthritis in Quebec, Canada

    Get PDF

    The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their therapeutic potential in immune-mediated disease

    Get PDF
    The oxytocinase subfamily of M1 aminopeptidases plays an important role in processing and trimming of peptides for presentation on major histocompatibility (MHC) Class I molecules. Several large-scale genomic studies have identified association of members of this family of enzymes, most notably ERAP1 and ERAP2, with immune-mediated diseases including ankylosing spondylitis, psoriasis and birdshot chorioretinopathy. Much is now known about the genetics of these enzymes and how genetic variants alter their function, but how these variants contribute to disease remains largely unresolved. Here we discuss what is known about their structure and function and highlight some of the knowledge gaps that affect development of drugs targeting these enzymes

    Experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters

    Get PDF
    International audienceOpen-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3-dimensional, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims i) to measure and simulate the flow pattern in a junction flow, ii) to analyze the impact of the junction on the velocity distribution according to the distance from the junction and thus iii) to evaluate the typical error derived from the computation of the flow rate close to the junction

    Cluster analysis with MOODS‐SR illustrates a potential bipolar disorder risk phenotype in young adults with remitted major depressive disorder

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147140/1/bdi12693_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147140/2/bdi12693.pd

    Test Results from the PF Conductor Insert Coil and Implications for the ITER PF System

    Get PDF
    In this paper we report the main test results obtained on the Poloidal Field Conductor Insert coil (PFI) for the International Thermonuclear Experimental Reactor (ITER), built jointly by the EU and RF ITER parties, recently installed and tested in the CS Model Coil facility, at JAEA-Naka. During the test we (a) verified the DC and AC operating margin of the NbTi Cable-in-Conduit Conductor in conditions representative of the operation of the ITER PF coils, (b) measured the intermediate conductor joint resistance, margin and loss, and (c) measured the AC loss of the conductor and its changes once subjected to a significant number of Lorentz force cycles. We compare the results obtained to expectations from strand and cable characterization, which were studied extensively earlier. We finally discuss the implications for the ITER PF system

    Harmful and beneficial symbionts of Tenebrio molitor and their implications for disease management

    Get PDF
    The yellow mealworm, Tenebrio molitor, is currently one of the most important insect species produced for livestock feed and human consumption. High-density rearing conditions make the risk of disease and infections by parasitic symbionts a challenge in the mass production of these insects. However, certain symbionts are beneficial and should be favoured in order to promote healthy insect populations. Knowledge of parasitic symbionts and their management is essential for the insect rearing industry and its associated research. Here we review the documented microbial infectious agents, invertebrate parasites, and beneficial symbionts occurring in T. molitor. Furthermore, we discuss detection, prevention, and treatment methods for disease management in T. molitor production systems to inform future management and decision making in T. molitor rearing
    • 

    corecore