2,264 research outputs found

    Balanced Truncation of Networked Linear Passive Systems

    Get PDF
    This paper studies model order reduction of multi-agent systems consisting of identical linear passive subsystems, where the interconnection topology is characterized by an undirected weighted graph. Balanced truncation based on a pair of specifically selected generalized Gramians is implemented on the asymptotically stable part of the full-order network model, which leads to a reduced-order system preserving the passivity of each subsystem. Moreover, it is proven that there exists a coordinate transformation to convert the resulting reduced-order model to a state-space model of Laplacian dynamics. Thus, the proposed method simultaneously reduces the complexity of the network structure and individual agent dynamics, and it preserves the passivity of the subsystems and the synchronization of the network. Moreover, it allows for the a priori computation of a bound on the approximation error. Finally, the feasibility of the method is demonstrated by an example

    Fluorescence monitoring of capilarry electrophoresis separation in a lab-on-a-chip with monolithically integrated waveguides

    Get PDF
    Femtosecond-laser-written optical waveguides were monolithically integrated into a commercial lab-on-a-chip to intersect a microfluidic channel. Laser excitation through these waveguides confines the excitation window to a width of 12 μm, enabling high-spatial-resolution monitoring of different fluorescent analytes, during their migration/separation in the microfluidic channel by capillary electrophoresis. Wavelength-selective monitoring of the on-chip separation of fluorescent dyes is implemented as a proof-of-principle. We envision well-controlled microfluidic plug formation, waveguide excitation, and a low limit of detection to enable monitoring of extremely small quantities with high spatial resolution

    Multi-point, multi-wavelength fluorescence monitoring of DNA separation in a lab-on-a-chip with monolithically integrated femtosecond-laser-written waveguides

    Get PDF
    Electrophoretic separation of fluorescently labeled DNA molecules in on-chip microfluidic channels was monitored by integrated waveguide arrays, with simultaneous spatial and wavelength resolution. This is an important step toward point-of-care diagnostics with multiplexed DNA assays

    Laparoscopic radical 'no-touch' left pancreatosplenectomy for pancreatic ductal adenocarcinoma: technique and results

    No full text
    Background Laparoscopic left pancreatectomy has been well described for benign pancreatic lesions, but its role in pancreatic adenocarcinoma remains open to debate. We report our results adopting a laparoscopic technique that obeys established oncologic principles of open distal pancreatosplenectomy. Methods This is a post hoc analysis of a prospectively kept database of 135 consecutive patients undergoing laparoscopic left pancreatectomy, performed across two sites in the UK and the Netherlands (07/2007–07/2015 Southampton and 10/2013–07/2015 Amsterdam). Primary outcomes were resection margin and lymph node retrieval. Secondary endpoints were other perioperative outcomes, including post-operative pancreatic fistula. Definition of radical resection was distance tumour to resection margin >1 mm. All patients underwent ‘laparoscopic radical left pancreatosplenectomy’ (LRLP) which involves ‘hanging’ the pancreas including Gerota’s fascia, followed by clockwise dissection, including formal lymphadenectomy. Results LRLP for pancreatic adenocarcinoma was performed in 25 patients. Seven of the 25 patients (28 %) had extended resections, including the adrenal gland (n = 3), duodenojejunal flexure (n = 2) or transverse mesocolon (n = 3). Mean age was 68 years (54–81). Conversion rate was 0 %, mean operative time 240 min and mean blood loss 340 ml. Median intensive/high care and hospital stay were 1 and 5 days, respectively. Clavien–Dindo score 3+ complication rate was 12 % and ISGPF grade B/C pancreatic fistula rate 28 %; 90-day (or in-hospital) mortality was 0 %. The pancreatic resection margin was clear in all patients, and the posterior margin was involved (<1 mm) in 6 patients, meaning an overall R0 resection rate of 76 %. No resection margin was microscopically involved. Median nodal sample was 15 nodes (3–26). With an average follow-up of 17.2 months, 1-year survival was 88 %. Conclusions A standardised laparoscopic approach to pancreatic adenocarcinoma in the left pancreas can be adopted safely. Our study shows that these results can be reproduced across multiple sites using the same technique

    Multi-wavelength fluorescence sensing with integrated waveguides in an optofluidic chip

    Get PDF
    Femtosecond-laser-written integrated waveguides enable multi-wavelength fluorescence sensing of flowing biomolecules in an optofluidic chip. Fluorescence from differently labeled biomolecules with distinct absorption wavelengths, encoded by uniquely modulating each excitation beam, is detected by a color-blind photodetector, and the origin of each signal is unraveled by Fourier analysis

    Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    Get PDF
    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically lack integrated sensing capability. We address this issue by combining microfluidic capillary electrophoresis with laser-induced fluorescence detection resulting in optofluidic integration towards an on-chip bio-analysis tool [1,2]. We achieve a spatial separation resolution of 12 μm, which can enable a 20-fold enhancement in electropherogram peak resolution, leading to plate numbers exceeding one million. We demonstrate a high sizing/calibration accuracy of 99% [3], and ultrasensitive fluorescence detection (limit of detection = 65 femtomolar, corresponding to merely 2-3 molecules in the excitation/detection volume) of diagnostically relevant double-stranded DNA molecules by integrated-waveguide laser excitation. Subsequently, we introduce a principle of parallel optical processing to this optofluidic lab-on-a-chip. Different sets of exclusively color-labeled DNA fragments – otherwise rendered indistinguishable by their spatio-temporal coincidence – are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a color-blind photomultiplier, and Fourier-analysis decoding. As a proof of principle, fragments from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are extracted by multiplex ligation-dependent probe amplification, and simultaneously analyzed. Such multiple yet unambiguous optical identification of biomolecules opens new horizons for “enlightened” lab-on-a-chip devices

    Cost-effectiveness of laparoscopic versus open distal pancreatectomy for pancreatic cancer

    Get PDF
    BACKGROUND: A recent Cochrane review compared laparoscopic versus open distal pancreatectomy for people with for cancers of the body and tail of the pancreas and found that laparoscopic distal pancreatectomy may reduce the length of hospital stay. We compared the cost-effectiveness of laparoscopic distal pancreatectomy versus open distal pancreatectomy for pancreatic cancer. METHOD: Model based cost-utility analysis estimating mean costs and quality-adjusted life years (QALYs) per patient from the perspective of the UK National Health Service. A decision tree model was constructed using probabilities, outcomes and cost data from published sources. A time horizon of 5 years was used. One-way and probabilistic sensitivity analyses were undertaken. RESULTS: The probabilistic sensitivity analysis showed that the incremental net monetary benefit was positive (£3,708.58 (95% confidence intervals (CI) -£9,473.62 to £16,115.69) but the 95% CI includes zero, indicating that there is significant uncertainty about the cost-effectiveness of laparoscopic distal pancreatectomy versus open distal pancreatectomy. The probability laparoscopic distal pancreatectomy was cost-effective compared to open distal pancreatectomy for pancreatic cancer was between 70% and 80% at the willingness-to-pay thresholds generally used in England (£20,000 to £30,000 per QALY gained). Results were sensitive to the survival proportions and the operating time. CONCLUSIONS: There is considerable uncertainty about whether laparoscopic distal pancreatectomy is cost-effective compared to open distal pancreatectomy for pancreatic cancer in the NHS setting

    Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species

    Get PDF
    The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4 ·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca-SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars
    corecore