Femtosecond-laser-written optical waveguides were monolithically integrated into a commercial lab-on-a-chip to intersect a microfluidic channel. Laser excitation through these waveguides confines the excitation window to a width of 12 μm, enabling high-spatial-resolution monitoring of different fluorescent analytes, during their migration/separation in the microfluidic channel by capillary electrophoresis. Wavelength-selective monitoring of the on-chip separation of fluorescent dyes is implemented as a proof-of-principle. We envision well-controlled microfluidic plug formation, waveguide excitation, and a low limit of detection to enable monitoring of extremely small quantities with high spatial resolution