17 research outputs found

    Influence of fluorination on the conformational properties and hydrogen-bond acidity of benzyl alcohol derivatives

    No full text
    The effect of fluorination on the conformational and hydrogen-bond (HB)-donating properties of a series of benzyl alcohols has been investigated experimentally by IR spectroscopy and theoretically with quantum chemical methods (ab initio (MP2) and DFT (MPWB1K)). It was found that o-fluorination generally resulted in an increase in the HB acidity of the hydroxyl group, whereas a decrease was observed upon o,o?-difluorination. Computational analysis showed that the conformational landscapes of the title compounds are strongly influenced by the presence of o-fluorine atoms. Intramolecular interaction descriptors based on AIM, NCI and NBO analyses reveal that, in addition to an intramolecular OH???F interaction, secondary CH???F and/or CH???O interactions also occur, contributing to the stabilisation of the various conformations, and influencing the overall HB properties of the alcohol group. The benzyl alcohol HB-donating capacity trends are properly described by an electrostatic potential based descriptor calculated at the MPWB1K/6-31+G(d,p) level of theory, provided solvation effects are taken into account for these flexible HB donors

    Impact of dietary intervention on eating behavior after ischemic stroke

    No full text
    International audienceOBJECTIVE: Ischemic stroke is a major health issue. Currently, the relationship between dietary patterns and the occurrence of cardiovascular diseases including stroke is established, but the effect of systematic dietary intervention on dietary changes in ischemic stroke patients is unknown. Our objective was to compare changes in the dietary pattern of ischemic stroke patients who received a systematic diet intervention with changes in the dietary pattern of ischemic stroke patients who did not receive a systematic dietary intervention during their hospitalization. METHODS: In this before-and-after study, two groups of patients with ischemic stroke were compared: Group 1 included 34 patients admitted with an ischemic stroke without a systematic dietray intervention; Group 2 included 34 patients admitted with an ischemic stroke with a systematic dietary intervention. Dietary patterns were assessed by a validated food frequency questionnaire of 19 questions (from a previously validated questionnaire of 14 questions), at the onset of stroke and at 6 months after stroke. This questionnaire allows the calculation of different scores as follows: global food score, saturated fatty acids score (SFA), unsaturated fatty acids score (UFA), fruit and vegetable score, and alcohol score. RESULTS: Score changes were more important in group 2 than in group 1 for the global food score (7.4 ± 7 vs. 1.9 ± 6.7, p = 0.0013), the fruit and vegetable score (2 ± 2.6 vs. 0.6 ± 2.2, p = 0.0047), and the UFA score (1.8 ± 2.7 vs. 0.1 ± 3.3, p = 0.0238), whereas no significant differences were observed for the SFA score (-3.9 ± 4.9 vs. -1.6 ± 6, p = 0.1779) and the alcohol score (-0.4 ± 1.5 vs. -0.3 ± 1.1, p = 0.6960). CONCLUSION: This study showed that systematic dietary intervention during hospitalization improves the dietary patterns of ischemic stroke patients. The impact on the recurrence of ischemic stroke or cardiovascular events after dietary pattern changes needs to be studied

    Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments

    No full text
    International audienceThis paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material

    Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin

    No full text
    International audienceWe performed Hyper-Rayleigh Scattering (HRS) experiments to measure the second-order nonlinear optical response of the collagen triple helix and determine the physical origin of second harmonic signals observed in collagenous tissues. HRS experiments yielded a second-order hyperpolarizability of 1.25 x 10(-27) esu for rat-tail type I collagen, a Surprisingly large value considering that collagen presents no strong harmonophore in its amino acid sequence. Polarization-resolved experiments showed intramolecular coherent contributions to the HRS signal along with incoherent contributions that are the only contributions for molecules with dimensions much smaller than the excitation wavelength. We therefore modeled the effective second-order hyperpolarizability of the 290 nm long collagen triple helix by summing coherently the nonlinear response of well-aligned moieties along the triple helix axis. This model was confirmed by HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)(10)](3). We concluded that the large collagen nonlinear response originates in the tight alignment of a large number of small and weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal

    Second order hyperpolarizability of the collagen triple helix: Measurement and determination of its physical origin

    No full text
    International audienceCollagen is the major protein of the extracellular matrix and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. As a fundamental brick of the architecture of tissues, it guarantees organs functioning and is crucial in the adaptative response to various tissue injuries. This protein is characterized by triple helical domains and possesses remarkable non linear optical properties. Indeed, collagen fibers exhibit efficient Second Harmonic Generation (SHG) in tissues and SHG microscopy has proved to be a valuable technique to probe the three-dimensional architecture of fibrillar collagen in native and biomimetic tissues and to assess the progression of fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments in order to measure quantitatively the nonlinear optical response of the collagen molecule, and to get insight into the physical origin of high SHG signals observed for fibrillar collagen in tissues

    A Bottom-Up Approach to Build the Hyperpolarizability of Peptides and Proteins from their Amino-Acids

    No full text
    International audienceWe experimentally demonstrate that some peptides and proteins lend themselves to an elementary analysis where their first hyperpolarizability can be decomposed into the coherent superposition of the first hyperpolarizability of their elementary units. We then show that those elementary units can be associated with the amino acids themselves in the case of nonaromatic amino acids and nonresonant second harmonic generation. As a case study, this work investigates the experimentally determined first hyperpolarizability of rat tail Type I collagen and compares it to that of the shorter peptide [(PPG)10]3, where P and G are the one-letter code for Proline and Glycine, respectively, and that of the triamino acid peptides PPG and GGG. An absolute value of (0.16 ± 0.01) × 10-30 esu for the first hyperpolarizability of nonaromatic amino acids is then obtained by using the newly defined 0.087 × 10-30 esu reference value for water. By using a collagen like model, the microscopic hyperpolarizability along the peptide bond can be evaluated at (0.7 ± 0.1) × 10-30 esu

    Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    No full text
    International audienceCollagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices. © 2010 Copyright SPIE - The International Society for Optical Engineering

    Influence of alcohol beta-fluorination on hydrogen-bond acidity of conformationally flexible substrates

    No full text
    Rational modulations of molecular interactions are of significant importance in compound properties optimization. We have previously shown that fluorination of conformationally rigid cyclohexanols leads to attenuation of their hydrogen-bond (H-bond) donating capacity (designated by pKAHY) when OH⋅⋅⋅F intramolecular hydrogen-bond (IMHB) interactions occur, as opposed to an increase in pKAHY due to the fluorine electronegativity. This work has now been extended to a wider range of aliphatic β-fluorohydrins with increasing degrees of conformational flexibility. We show that the observed differences in pKAHY between closely related diastereomers can be fully rationalized by subtle variations in populations of conformers able to engage in OH⋅⋅⋅F IMHB, as well as by the strength of these IMHBs. We also show that the Kenny theoretical Vα(r) descriptor of H-bond acidity accurately reflects the observed variations and a calibration equation extended to fluorohydrins is proposed. This work clearly underlines the importance of the weak OH⋅⋅⋅F IMHB in the modulation of alcohol H-bond donating capacity

    Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques.

    No full text
    International audience3-Methoxy-17α-ethynylestradiol or mestranol is a prodrug for ethynylestradiol and the estrogen component of some oral contraceptive formulations. We demonstrate here that a single core multimodal probe for imaging - SCoMPI - can be efficiently grafted onto mestranol allowing its tracking in two breast cancer cell lines, MDA-MB-231 and MCF-7 fixed cells. Correlative imaging studies based on luminescence (synchrotron UV spectromicroscopy, wide field and confocal fluorescence microscopies) and vibrational (AFMIR, synchrotron FTIR spectromicroscopy, synchrotron-based multiple beam FTIR imaging, confocal Raman microspectroscopy) spectroscopies were consistent with one another and showed a Golgi apparatus distribution of the SCoMPI-mestranol conjugate in both cell lines

    A fluorescence-based assay for monitoring clinical drug resistance

    No full text
    BACKGROUND AND AIMS: Multidrug resistance (MDR) limits effectiveness in treating malignancy by modifying internalisation and/or externalisation of drugs through cancer cell membranes. In this study we describe an assay to monitor patients' responses to chemotherapy.METHODS: The assay is based on the fluorescent properties of doxorubicin alone as well as in combination with methotrexate, vinblastine, doxorubicin and cisplatin (MVAC). The slide-based cell imaging technique was first optimised using a panel of breast and urothelial cancer cell lines and then extended to fine needle breast aspiration biopsy and urine cytology.RESULTS: The drug fluorescence behaviour observed on smears of clinical specimens is identical to that obtained using fixed cultured cells. The fluorescence of sensitive cells to chemotherapy is mainly localised in the nucleus, whereas resistant cells show a weak fluorescence signal localised in the cytoplasm. The difference in terms of fluorescence intensity is also highlighted through fluorescence spectra.CONCLUSIONS: The results suggest that the assay provides clinically valuable information in predicting responses to doxorubicin and/or MVAC therapy. Originally set up on a confocal microscope, the assay was also effective using a standard epifluorescence microscope; as such it is technically simple, reliable and inexpensive
    corecore