65 research outputs found

    An Efficient Representation of Euclidean Gravity I

    Full text link
    We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.Comment: 31 pages, 1 figur

    Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    Get PDF
    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.The authors are grateful to R. Nieuwburg, the St Johnston group, and other Gurdon Institute members for suggestions. We thank the Bloomington Stock Center, J. Knoblich, and the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) for fly stocks. We thank N. Lowe for technical assistance. This work was supported by a Wellcome Trust Principal Fellowship to D.St.J. (080007), and by core support from the Wellcome Trust (092096) and Cancer Research UK (A14492). D.T.B. was supported by a Marie Curie Fellowship and the Wellcome Trust. H.E.L. was supported by a Herchel Smith Studentship.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncb324

    Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos

    Get PDF
    The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars
    • …
    corecore