1,273 research outputs found

    Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors

    Get PDF
    The use of single-walled carbon nanotubes as effective nanoreactors for preparative bimolecular reactions has been demonstrated for the first time. We show that the extreme spatial confinement of guest reactant molecules inside host carbon nanotubes increases the regioselectivity for 1,4-triazole in thermally initiated azide–alkyne cycloaddition reactions. Through comparison of the internal dimensions of the nanotube and the steric bulk of the reactants, we demonstrate that the formation of the more linear 1,4-regioisomer can be enhanced by up to 55% depending on the extent of spatial restrictions imposed within the nanoreactors. Furthermore, through systematic variation of the substituents in the para-position of the alkyne reactants, we reveal the unexpected influence of the reactants’ electronic properties on the regioselectivity of reactions within nanoreactors, which act to either oppose or promote the preferential formation of the 1,4-regioisomer induced by steric effects, reflecting the unique ability of carbon nanotubes to stabilize the dipole moment of confined reactants. Thus, we show that the observed regioselectivity of azide–alkyne cycloaddition reactions confined within carbon nanotube nanoreactors reflects a subtle interplay between both steric and electronic factors

    Quantum chemical calculations of X-ray emission spectroscopy

    Get PDF
    The calculation of X-ray emission spectroscopy with equation of motion coupled cluster theory (EOM-CCSD), time dependent density functional theory (TDDFT) and resolution of the identity single excitation configuration interaction with second order perturbation theory (RI-CIS(D)) is studied. These methods can be applied to calculate X-ray emission transitions by using a reference determinant with a core-hole, and they provide a convenient approach to compute the X-ray emission spectroscopy of large systems since all of the required states can be obtained within a single calculation removing the need to perform a separate calculation for each state. For all of the methods, basis sets with the inclusion of additional basis functions to describe core orbitals are necessary, particularly when studying transitions involving the 1s or- bitals of heavier nuclei. EOM-CCSD predicts accurate transition energies when compared with experiment, however, its application to larger systems is restricted by its computational cost and difficulty in converging the CCSD equations for a core-hole reference determinant, which become increasing problematic as the size of the system studied increases. While RI-CIS(D) gives accurate transition energies for small molecules containing first row nuclei, its application to larger systems is limited by the CIS states providing a poor zeroth order reference for perturbation theory which leads to very large errors in the computed transition energies for some states. TDDFT with standard exchange-correlation functionals predicts transition energies that are much larger than experiment. Optimization of a hybrid and short-range cor- rected functional to predict the X-ray emission transitions results in much closer agreement with EOM-CCSD. The most accurate exchange-correlation functional identified is a modified B3LYP hybrid functional with 66% Hartree-Fock exchange, denoted B66LYP, which predicts X-ray emission spectra for a range of molecules including fluorobenzene, nitrobenzene, ace- tone, dimethyl sulfoxide and CF3Cl in good agreement with experiment

    Warfare, Fiscal Capacity, and Performance

    Get PDF
    We exploit differences in casualties sustained in pre-modern wars to estimate the impact of fiscal capacity on economic performance. In the past, states fought different amounts of external conflicts, of various lengths and magnitudes. To raise the revenues to wage wars, states made fiscal innovations, which persisted and helped to shape current fiscal institutions. Economic historians claim that greater fiscal capacity was the key long-run institutional change brought about by historical conflicts. Using casualties sustained in pre-modern wars to instrument for current fiscal institutions, we estimate substantial impacts of fiscal capacity on GDP per worker. The results are robust to a broad range of specifications, controls, and sub-samples

    Soliton Interactions in Perturbed Nonlinear Schroedinger Equations

    Full text link
    We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the interaction of a number of solitons of the cubic nonlinear Schroedinger equation under the influence of a small correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the initial instant; this maximizes the effect each soliton has on the others as a consequence of the perturbation. Over the long time scales that we consider, the amplitudes of the solitons remain fixed, while their center of mass coordinates obey Newton's equations with a force law for which we present an integral formula. For the interaction of two solitons with a quintic perturbation term we present more details since symmetries -- one related to the form of the perturbation and one related to the small number of particles involved -- allow the problem to be reduced to a one-dimensional one with a single parameter, an effective mass. The main results include calculations of the binding energy and oscillation frequency of nearby solitons in the stable case when the perturbation is an attractive correction to the potential and of the asymptotic "ejection" velocity in the unstable case. Numerical experiments illustrate the accuracy of the perturbative calculations and indicate their range of validity.Comment: 28 pages, 7 figures, Submitted to Phys Rev E Revised: 21 pages, 6 figures, To appear in Phys Rev E (many displayed equations moved inline to shorten manuscript

    Does the Supreme Court Follow the Economic Returns? A Response to A Macrotheory of the Court

    Get PDF
    Today, there is a widespread idea that parents need to learn how to carry out their roles as parents. Practices of parental learning operate throughout society. This article deals with one particular practice of parental learning, namely nanny TV, and the way in which ideal parents are constructed through such programmes. The point of departure is SOS family, a series broadcast on Swedish television in 2008. Proceeding from the theorising of governmentality developed in the wake of the work of Michel Foucault, we analyse the parental ideals conveyed in the series, as an example of the way parents are constituted as subjects in the ‘advanced liberal society’ of today. The ideal parent is a subject who, guided by the coach, is constantly endeavouring to achieve a makeover. The objective of this endeavour, however, is self-control, whereby the parents will in the end become their own coaches.

    Theoretical study of the electronic spectra of small molecules that incorporate analogues of the copper-cysteine bond

    Get PDF
    The copper-sulphur bond which binds cysteinate to the metal centre is a key factor in the spectroscopy of blue copper proteins. We present theoretical calculations describing the electronically excited states of small molecules, including CuSH, CuSCH_3, (CH_3)_2SCuSH, (imidazole)-CuSH and (imidazole)_2-CuSH, derived from the active site of blue copper proteins that contain the copper-sulphur bond in order to identify small molecular systems that have electronic structure that is analogous to the active site of the proteins. Both neutral and cationic forms are studied, since these represent the reduced and oxidised forms of the protein, respectively. For CuSH and CuSH^+, excitation energies from time-dependent density functional theory with the B97-1 exchange-correlation functional agree well with the available experimental data and multireference configuration interaction calculations. For the positive ions, the singly occupied molecular orbital is formed from an antibonding combination of a 3d orbital on copper and a 3pπ orbital on sulphur, which is analogous to the protein. This leads several of the molecules to have qualitatively similar electronic spectra to the proteins. For the neutral molecules, changes in the nature of the low lying virtual orbitals leads the predicted electronic spectra to vary substantially between the different molecules. In particular, addition of a ligand bonded directly to copper results in the low-lying excited states observed in CuSH and CuSCH_33 to be absent or shifted to higher energies

    Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study

    Get PDF
    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions
    corecore