28 research outputs found

    Amplitude- and phase-resolved nano-spectral imaging of phonon polaritons in hexagonal boron nitride

    Full text link
    Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase-resolved near-field interferometry with broadband mid-IR synchrotron radiation. The large spectral bandwidth enables the simultaneous measurement of both out-of-plane (780 cm-1) and in-plane (1370 cm-1) hBN phonon modes. In contrast to the strong and dispersive in-plane mode, the out-of-plane mode PhP response is weak. Measurements of the PhP wavelength reveal a proportional dependence on sample thickness for thin hBN flakes, which can be understood by a general model describing two-dimensional polariton excitation in ultrathin materials

    Phase-Resolved Rydberg Atom Field Sensing using Quantum Interferometry

    Full text link
    Although Rydberg atom-based electric field sensing provides key advantages over traditional antenna-based detection, it remains limited by the need for a local oscillator (LO) for low-field and phase resolved detection. In this work, we demonstrate that closed-loop quantum interferometric schemes can be used to generate a system-internal reference that can directly replace an external LO for Rydberg field sensing. We reveal that this quantum-interferometrically defined internal reference phase and frequency can be used analogously to a traditional LO for atom-based down-mixing to an intermediate frequency for lock-in phase detection. We demonstrate that this LO-equivalent functionality provides analogous benefits to an LO, including full 360∘^\circ phase resolution as well as improved sensitivity. The general applicability of this approach is confirmed by demodulating a four phase-state signal broadcast on the atoms. Our approach opens up new sensing schemes and provides a clear path towards all-optical Rydberg atom sensing implementations

    Sensitivity Comparison of Two-photon vs Three-photon Rydberg Electrometry

    Full text link
    We investigate the sensitivity of three-photon EIT in Rydberg atoms to radio frequency detection and compare it against conventional two-photon systems. Specifically, we model the 4-level and 5-level atomic system and compare how the transmission of the probe changes with different powers of the lasers used and strengths of the RF field. In this model, we also define a sensitivity metric to best relate to the operation of the current best experimental implementation based on shot noise limited detection. We find that the three-photon system boasts much narrower line widths compared to the conventional two-photon EIT. However, these narrow line features do not align with the regions of the best sensitivity. In addition to this, we calculate the expected sensitivity for the two-photon Rydberg sensor and find that the best achievable sensitivity is over an order of magnitude better than the current measured values of 5 uV/m/Hz. However, by accounting for the additional noise sources in the experiment and the quantum efficiency of the photo-detectors, the values are in good agreement.Comment: 9 pages, 6 figure

    Detection of HF and VHF Fields through Floquet Sideband Gaps by `Rabi Matching' Dressed Rydberg Atoms

    Get PDF
    Radio frequencies in the HF and VHF (3 MHz to 300 MHz) bands are challenging for Rydberg atom-based detection schemes, as resonant detection requires exciting the atoms to extremely high energy states. We demonstrate a method for detecting and measuring radio frequency (RF) carriers in the HF and VHF bands via a controlled Autler-Townes line splitting. Using a resonant, high-frequency (GHz) RF field, the absorption signal from Townes-Merrit sidebands created by a low frequency, non-resonant RF field can be enhanced. Notably, this technique uses a measurement of the optical frequency separation of an avoided crossing to determine the amplitude of a non-resonant, low frequency RF field. This technique also provides frequency-selective measurements of low frequency RF electric fields. To show this, we demonstrate amplitude modulated signal transduction on a low frequency VHF carrier. We further demonstrate reception of multiple tones simultaneously, creating a Rydberg `spectrum analyzer' over the VHF range.Comment: Data for figures can be found at: https://datapub.nist.gov/od/id/mds2-285

    Microwave Near-Field Imaging of Two-Dimensional Semiconductors

    Get PDF
    Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS_2 and n- and p-doped WSe_2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects

    Microwave Near-Field Imaging of Two-Dimensional Semiconductors

    Get PDF
    Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS_2 and n- and p-doped WSe_2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects
    corecore