118 research outputs found

    Modification of cheese flavour through the use of surface microbiota

    Get PDF
    Surface microorganisms in surface-ripened cheese, combined with lactic acid bacteria, contribute to lipolysis and proteolysis, degradation of free fatty acids and free amino acids, and the metabolism of lactose, citrate and lactate, with a consequent biosynthesis of volatile flavour compounds. The intense metabolic activity of the yeasts and Gram-positive bacteria on the cheese surface is evident in surface-ripened cheese, where the resident surface microbial population is responsible for the characteristic strong flavour, typical for this cheese variety. Although cheese is a widely studied fermented food, the biochemical mechanisms which lead to the biosynthesis of volatile compounds, and the development of cheese flavour, are not completely clear and need to be explained. Therefore, the aim of the studies in this thesis was to investigate the development of flavour volatile compounds in cheese, produced by cheese microbiota, both as single strains in model systems, and when applied to cheese curd surface as simple or more complex culture mixes containing yeasts and Gram-positive bacteria. Through the use of the metagenomic and enzymatic assays, it has been possible to investigate the potential flavour-forming ability of the cheese microorganisms, and correlate the results to volatile flavour compounds detected with gas-chromatography. Our results have shown how variations in the microbial population influence the flavour development in cheese during ripening. This research may be of industrial benefit for the manipulation of the microbiota and the production of fermented food with specific flavour characteristics

    Initial/boundary-value problems of tumor growth within a host tissue

    Full text link
    This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori nonnegativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure

    Activated carbons : In vitro affinity for ochratoxin A and deoxynivalenol and relation of adsorption ability to physicochemical parameters

    Get PDF
    In vitro affinity tests were conducted to test the effectiveness of 19 activated carbons (ACs), hydrates sodium calcium aluminosilicate (HSCAS) and sepiolite (S) in binding ochratoxin A (OA) and deoxynivalenol (DON) from solution. Relationships between adsorption ability and physicochemical parameters of ACs (surface area, iodine number, methylene blue index) were tested. When 5 ml of a 4-micrograms/ml aqueous solution of OA was treated with 2 mg of AC, the ACs adsorbed 0.80 to 99.86% of the OA. HSCAS and S were not effective in binding OA. In two saturation tests carried out with increased amounts of OA (5 ml of 10-and 50-micrograms/ml aqueous solutions of OA, respectively) three ACs also showed high adsorption ability (adsorbing 92.23 to 96.57% of the OA). When 5 ml of a 4-micrograms/ml aqueous solution of DON was treated with 10 mg of AC, ACs adsored 1.83 to 98.93% of the DON. HSCAS and S were not effective in binding DON. An overall relation of adsorption ability to the physicochemical parameters of ACs was observed. The methylene blue index was more reliable than iodine number and surface area in predicting ability of ACs to adsorb OA and DON. Based on the data observed on the xxxxx eh present study as well as on aflatoxin B1 and fumonisin B1 from previous studies, it is concluded that ACs have high in vitro affinity for chemically different mycotoxins, and can be considered as potential multi-mycotoxin-sequestering agents. However, the ability to bind the main mycotoxins singly or in combination should be confirmed by in vivo investigations. Moreover, information on the amounts of AC to be added to feeds, and on the possible long-term effect on absorption of essential nutrients are needed

    Determining Noise and Vibration Exposure in Conifer Cross-Cutting Operations by Using Li-Ion Batteries and Electric Chainsaws

    Get PDF
    In many activities, chainsaw users are exposed to the risk of injuries and several other hazard factors that may cause health problems. In fact, environmental and working conditions when using chainsaws result in workers’ exposure to hazards such as noise, vibration, exhaust gases, and wood dust. Repeated or continuous exposure to these unfavourable conditions can lead to occupational diseases that become apparent after a certain period of time has elapsed. Since the use of electric tools is increasing in forestry, the present research aims to evaluate the noise and vibration exposure caused by four models of electric chainsaws (Stihl MSA160T, Stihl MSA200C Li-Ion battery powered and Stihl MSE180C, Stihl MSE220C wired) during cross-cutting. Values measured on the Stihl MSA160T chainsaw (Li-Ion battery) showed similar vibration levels on both right and left handles (0.9–1.0 m s−2, respectively) and so did the other battery-powered chainsaw, the Stihl MSA200C (2.2–2.3 m s−2 for right and left handles, respectively). Results showed a range of noise included between 81 and 90 dB(A) for the analysed chainsaws. In conclusion, the vibrations and noise were lower for the battery chainsaws than the wired ones, but, in general, all the values were lower than those measured in previous studies of endothermic chainsaws

    Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese

    Get PDF
    peer-reviewedThe draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods

    Reduction of Carryover of Aflatoxin from Cow Feed to Milk by Addition of Activated Carbons.

    Get PDF
    According to a double-reversal experimental design on 12 late-lactation Friesian cows the effect of two activated carbons (ACs) (CAC1 and CAC2) and a hydrated sodium calcium aluminosilicate (HSCAS) on carryover of aflatoxin B1 (AFB1) from feed to aflatoxin M1 (AFM1) in milk was determined. Cows were fed a basal diet containing AFB1 naturally contaminated corn meal and copra, During week 1 cows were fed diets containing AFB1 alone (11.28 ÎŒg of AFB1/kg of feed); in week 2 the diets contained AFB1 plus 2.0% sorbent; and in week 3 the diets again contained AFB1 alone (13.43 ÎŒg of AFB1/kg of feed). ACs reduced the analytical content of AFB1 in the pelleted feed by from 40.6% to 73.6%, whereas reduction by HSCAS was 59.2%, The AFM1 concentrations in milk in weeks 1 and 3 were higher than that in week 2, Decreases in the AFM1 excreted in the milk by addition to feed of 2% of the sorbents ranged from 22% to 45%. CAC1 and HSCAS were significantly different from each other in reducing the AFM1concentration in milk (45.3% versus 32.5%); these reductions were significantly higher than that of CAC2 (22.0%). Carryover reduction by addition of CAC1 (50%) was significantly higher than that of HSCAS (36%). Addition of 2% CAC2 did not allow pelleting of feed because of the caking action of this carbon, The lower performance of CAC2 could be related to the unsuccessful pelleting. The addition of ACs did not influence feed intake, milk production, milk composition, or body weight. Our results suggest that ACs, high-affinity sorbents for AFB1 in vitro, are efficacious in reducing AFB1 carryover from cow feed to milk. Further in vivo investigations should establish lower amounts of ACs which can be efficacious

    A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting

    Get PDF
    Chainsaw operators are exposed to many hazards that can lead to health problems. The two most frequently documented ergonomics threats in the use of chainsaws are noise and vibration exposure. Since the use of battery chainsaws is increasing due to the growing improvements in battery life and power, the study aims to compare the difference in terms of noise emission and vibration levels of the following two new models of chainsaws: the battery-powered Stihl MSA 300 and the petrol-powered Stihl MS 261 C-M. Black pine and European beech logs were cross-cut in order to evaluate both noise and vibration exposure. The results show that the use of battery-powered chainsaws, in comparison to the petrol one, can reduce the daily vibration exposure by more than 51% and the noise dose by 11%. The daily vibration exposure of 1.60 ms−2 and 1.67 ms−2 measured for the battery-powered chainsaw on Black pine and on European beech, respectively, is far from the daily exposure action value set by the EU directives for health and safety requirements (2.5 ms−2). On the contrary, the daily noise exposure for the battery chainsaw was 93 dB(A), exceeding the upper exposure action value of 85 dB(A)

    A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows.

    Get PDF
    Little is known about the effects of commonly found levels of Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cattle. We investigated the effects of regular contamination levels, meaning contamination levels that can be commonly detected in dairy feeds, of deoxynivalenol (DON) and fumonisins (FB) in total mixed ration (TMR) on the performance, diet digestibility, milk quality, and plasma liver enzymes in dairy cows. This trial examined 12 lactating Holstein dairy cows using a 3-period × 3-treatment Latin square design. The experimental period was 21 d of mycotoxin exposure followed by 14 d of washout. During treatment periods, cows received one of 3 diets: (1) CTR (control) diet of TMR contaminated with 340.5 ”g of DON/kg of dry matter (DM) and 127.9 ”g FB/kg of DM; (2) MTX diet of TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (i.e., 733.0 ”g of DON/kg of DM and 994.4 ”g of FB/kg of DM); or (3) MDP diet, which was MTX diet supplemented with a mycotoxin deactivator product (i.e., 897.3 ”g of DON/kg of DM and 1,247.1 ”g of FB/kg of DM; Mycofix, 35 g/animal per day). During washout, all animals were fed the same CTR diet. Body weight, body condition score, DM intake, dietary nutrient digestibility, milk production, milk composition and rennet coagulation properties, somatic cell count, blood serum chemistry, hematology, serum immunoglobulin concentrations, and expression of multiple genes in circulating leucocytes were measured. Milk production was significantly greater in the CTR group (37.73 kg/d) than in the MTX (36.39 kg/d) and the MDP (36.55 kg/d) groups. Curd firmness and curd firming time were negatively affected by the MTX diet compared with the other 2 diets. Furthermore, DM and neutral detergent fiber digestibility were lower after the MTX diet than after the CTR diet (67.3 vs. 71.0% and 42.8 vs. 52.3%). The MDP diet had the highest digestibility coefficients for DM (72.4%) and neutral detergent fiber (53.6%) compared with the other 2 diets. The activities of plasma liver transaminases were higher after the MTX diet than after the CTR and MDP diets. Compared with the CTR diet, the MTX diet led to slightly lower expression of genes related to immune and inflammatory functions, indicating that Fusarium mycotoxins had an immunosuppressive effect. Our results indicated that feed contaminated with regular levels of Fusarium mycotoxins adversely affected the performance, milk quality, diet digestibility, metabolic variables, and immunity of dairy cows, and that supplementation with mycotoxin deactivator product counteracted most of these negative effects

    Strains of the Lactobacillus casei group show diverse abilities for the production of flavor compounds in 2 model systems

    Get PDF
    peer-reviewedCheese flavor development is directly connected to the metabolic activity of microorganisms used during its manufacture, and the selection of metabolically diverse strains represents a potential tool for the production of cheese with novel and distinct flavor characteristics. Strains of Lactobacillus have been proven to promote the development of important cheese flavor compounds. As cheese production and ripening are long-lasting and expensive, model systems have been developed with the purpose of rapidly screening lactic acid bacteria for their flavor potential. The biodiversity of 10 strains of the Lactobacillus casei group was evaluated in 2 model systems and their volatile profiles were determined by gas chromatography-mass spectrometry. In model system 1, which represented a mixture of free AA, inoculated cells did not grow. In total, 66 compounds considered as flavor contributors were successfully identified, most of which were aldehydes, acids, and alcohols produced via AA metabolism by selected strains. Three strains (DPC2071, DPC3990, and DPC4206) had the most diverse metabolic capacities in model system 1. In model system 2, which was based on processed cheese curd, inoculated cells increased in numbers over incubation time. A total of 47 compounds were identified, and they originated not only from proteolysis, but also from glycolytic and lipolytic processes. Tested strains produced ketones, acids, and esters. Although strains produced different abundances of volatiles, diversity was less evident in model system 2, and only one strain (DPC4206) was distinguished from the others. Strains identified as the most dissimilar in both of the model systems could be more useful for cheese flavor diversification
    • 

    corecore