6 research outputs found

    Effects of saffron extract supplementation on mood, well-being, and response to a psychosocial stressor in healthy adults: A randomized, double-blind, parallel group, clinical trial

    Get PDF
    Anxiety, stress, and low mood are closely related and may contribute to depressive symptoms. Among non-pharmacological solutions to improve subclinical mood symptoms and resilience to stress, natural products such as saffron—identified as promising following preliminary beneficial effects in major depressive disorder—represent a relevant strategy. This study aimed to assess the efficacy of 8 weeks' supplementation with 30 mg standardized saffron extract on emotional well-being in healthy adults with subclinical feelings of low mood and anxiety and/or stress and evaluate the acute effect of saffron in response to a lab-based psychosocial stressor. The study adopted a double-blind, randomized, parallel groups design in which 56 healthy male and female individuals (18–54 years) received either a saffron extract or a placebo for 8 weeks. Chronic effects of saffron on subjective anxiety, stress, and depressive feelings were assessed using a questionnaire battery [including Profile of Mood State-2, (POMS)] and acute effects in response to a lab-based psychosocial stressor were measured through psychological and physiological parameters. Urinary crocetin levels were quantified. Participants who received the saffron extract reported reduced depression scores and improved social relationships at the end of the study. Urinary crocetin levels increased significantly with saffron supplementation and were correlated with change in depression scores. The typical stress-induced decrease in heart rate variability (HRV) during exposure to the stressor was attenuated following acute saffron intake. Saffron extract appears to improve subclinical depressive symptoms in healthy individuals and may contribute to increased resilience against the development of stress-related psychiatric disorders. Clinical trials number: NCT03639831

    Circulating human serum metabolites derived from the intake of a saffron extract (Safr’Insideℱ) protect neurons from oxidative stress: Consideration for depressive disorders

    Get PDF
    Increases in oxidative stress have been reported to play a central role in the vulnerability to depression, and antidepressant drugs may reduce increased oxidative stress in patients. Among the plants exerting anti-inflammatory and anti-oxidant properties, saffron, a spice derived from the flower of Crocus sativus, is also known for its positive effects on depression, potentially through its SSRI-like properties. However, the molecular mechanisms underlying these effects and their health benefits for humans are currently unclear. Using an original ex vivo clinical approach, we demonstrated for the first time that the circulating human metabolites produced following saffron intake (Safr’Insideℱ ) protect human neurons from oxidative-stress-induced neurotoxicity by preserving cell viability and increasing BNDF production. In particular, the metabolites significantly stimulated both dopamine and serotonin release. In addition, the saffron’s metabolites were also able to protect serotonergic tone by inhibiting the expression of the serotonin transporter SERT and down-regulating serotonin metabolism. Altogether, these data provide new biochemical insights into the mechanisms underlying the beneficial impact of saffron on neuronal viability and activity in humans, in the context of oxidative stress related to depression

    Acute effects of milk polar lipids on intestinal tight junction expression: Towards an impact of sphingomyelin through the regulation of IL-8 secretion?

    No full text
    International audienceMilk polar lipids (MPL) are specifically rich in milk sphingomyelin (MSM) which represents 24% of MPL. Beneficial effects of MPL or MSM have been reported on lipid metabolism, but information on gut physiology is scarce. Here we assessed whether MPL and MSM can impact tight junction expression. Human epithelial intestinal Caco-2/TC7 cells were incubated with mixed lipid micelles devoid of MSM (Control) or with 0.2 or 0.4 mM of MSM via pure MSM or via total MPL. C57Bl/6 mice received 5 or 10 mg of MSM via MSM or via MPL (oral gavage); small intestinal segments were collected after 4 h. Impacts on tight junction and cytokine expressions were assessed by qPCR; IL-8 and IL-8 murine homologs (Cxcl1, Cxcl2) were analyzed. In vitro, MSM increased tight junction expression (Occludin, ZO-1) vs Control, unlike MPL. However, no differences were observed in permeability assays (FITC-dextran, Lucifer yellow). MSM increased the secretion and gene expression of IL-8 but not of other inflammatory cytokines. Moreover, cell incubation with IL-8 induced an overexpression of tight junction proteins. In mice, mRNA level of Cxcl1 and Cxcl2 in the ileum were increased after gavage with MSM vs NaCl but not with MPL. Altogether, these results suggest a specific action of MSM on intestinal tight junction expression, possibly mediated by IL-8. Our study provides clues to shed light on the beneficial effects of MPL on intestinal functions and supports the need for further mechanistic exploration of the direct vs indirect effects of MSM and IL-8 on the gut barrier

    Milk Polar Lipids in a High-Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids.

    No full text
    SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity associated with altered gut microbiota and intestinal barrier. How these metabolic outcomes can be impacted by milk polar lipids (MPL), naturally containing 25% of sphingomyelin, is investigated in mice fed a mixed high-fat (HF) diet . METHODS AND RESULTS: Male C57Bl/6 mice receive a HF-diet devoid of MPL (21% fat, mainly palm oil, in chow), or supplemented with 1.1% or 1.6% of MPL (HF-MPL1; HF-MPL2) via a total-lipid extract from butterserum concentrate for 8 weeks. HF-MPL2 mice gain less weight versus HF (p < 0.01). Diets do not impact plasma markers of inflammation but in the liver, HF-MPL2 tends to decrease hepatic gene expression of macrophage marker F4/80 versus HF-MPL1 (p = 0.06). Colonic crypt depth is the maximum in HF-MPL2 (p < 0.05). In cecal microbiota, HF-MPL1 increases Bifidobacterium animalis versus HF (p < 0.05). HF-MPL2 decreases Lactobacillus reuteri (p < 0.05), which correlates negatively with the fecal loss of milk sphingomyelin-specific fatty acids (p < 0.05). CONCLUSION: In mice fed a mixed HF diet, MPL can limit HF-induced body weight gain and modulate gut physiology and the abundance in microbiota of bacteria of metabolic interest. This supports further exploration of how residual unabsorbed lipids reaching the colon can impact HF-induced metabolic disorders

    Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women

    No full text
    International audienceBACKGROUND. High circulating levels of ceramides (Cer) and sphingomyelins (SM) have been associated with cardiometabolic diseases. The consumption of whole-fat dairy products, which naturally contain such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown. We investigated how milk PL supplementation impacts circulating and intestinal SM and Cer composition in association with improvement of cardiovascular markers.METHODS. In a 4 week-randomized double-blind controlled study, 58 postmenopausal women consumed daily a cream cheese containing 0, 3 or 5 g of milk PL. Postprandial metabolic explorations were performed before and after the supplementation. SM and Cer species were analyzed in serum, intestine-derived chylomicrons and feces. The ileal content of 4 ileostomy patients was also explored after milk PL intake in a crossover double-blind study.RESULTS. Milk PL consumption decreased serum atherogenic C24:1 Cer (Pgroup = 0.033), C16:1 (Pgroup = 0.007) and C18:1 (Pgroup = 0.003) SM species. Changes in serum C16+18 SM species were positively correlated with the reduction of total cholesterol (r = 0.706, P < 0.001), LDL-C (r = 0.666, P < 0.001) and ApoB (r = 0.705, P < 0.001). Milk PL decreased the concentration in chylomicrons of total SM (Pgroup < 0.0001) and of C24:1 Cer (Pgroup = 0.001). Saturated SM and Cer species, which are also the major species found in milk PL-enriched cheeses, increased in ileal efflux and feces. There was a marked increase in total fecal Cer after milk PL supplementation (Pgroup = 0.0002). Milk PL also modulated the abundance of some specific SM and Cer species in ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut.CONCLUSION. These data demonstrate that milk PL supplementation decreases atherogenic SM and Cer species associated with an improvement of cardiovascular risk markers. Our findings bring new insights on sphingolipid metabolism in the gastrointestinal tract, especially Cer as such signaling molecules potentially participating in the beneficial effect of milk PL. ClinicalTrials.gov, NCT02099032, NCT02146339
    corecore