1,053 research outputs found
Si3N4 single-crystal nanowires grown from silicon micro and nanoparticles near the threshold of passive oxidation
A simple and most promising oxide-assisted catalyst-free method is used to
prepare silicon nitride nanowires that give rise to high yield in a short time.
After a brief analysis of the state of the art, we reveal the crucial role
played by the oxygen partial pressure: when oxygen partial pressure is slightly
below the threshold of passive oxidation, a high yield inhibiting the formation
of any silica layer covering the nanowires occurs and thanks to the synthesis
temperature one can control nanowire dimensions
Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2
We present a detailed comparison of the electronic structure of BaFe2As2 in
its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved
photoemission studies. Using different experimental geometries, we resolve the
full elliptic shape of the electron pockets, including parts of dxy symmetry
along its major axis that are usually missing. This allows us to define
precisely how the hole and electron pockets are nested and how the different
orbitals evolve at the transition. We conclude that the imperfect nesting
between hole and electron pockets explains rather well the formation of gaps
and residual metallic droplets in the AFM phase, provided the relative parity
of the different bands is taken into account. Beyond this nesting picture, we
observe shifts and splittings of numerous bands at the transition. We show that
the splittings are surface sensitive and probably not a reliable signature of
the magnetic order. On the other hand, the shifts indicate a significant
redistribution of the orbital occupations at the transition, especially within
the dxz/dyz system, which we discuss
Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface
We investigate the bismuth (111) surface by means of time and angle resolved
photoelectron spectroscopy. The parallel detection of the surface states below
and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO)
spitting. These strong deviations from the Rashba-like coupling cannot be
treated in perturbation theory. Instead, first
principle calculations could accurately reproduce the experimental dispersion
of the electronic states. Our analysis shows that the giant anisotropy of the
SO splitting is due to a large out-of plane buckling of the spin and orbital
texture.Comment: 5 pages, 4 figure
Ultrafast filling of an electronic pseudogap in an incommensurate crystal
We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time
resolved photoemission spectroscopy. The dispersion of electronic states is in
qualitative agreement with band structure calculated for the VS2 slab without
the incommensurate distortion. Nonetheless, the spectra display a temperature
dependent pseudogap instead of quasiparticles crossing. The sudden
photoexcitation at 50 K induces a partial filling of the electronic pseudogap
within less than 80 fs. The electronic energy flows into the lattice modes on a
comparable timescale. We attribute this surprisingly short timescale to a very
strong electron-phonon coupling to the incommensurate distortion. This result
sheds light on the electronic localization arising in aperiodic structures and
quasicrystals
Nanoparticles in SiH4-Ar plasma: Modelling and comparison with experimental data
Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow
Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment
Graphene stacked in a Bernal configuration (60 degrees relative rotations
between sheets) differs electronically from isolated graphene due to the broken
symmetry introduced by interlayer bonds forming between only one of the two
graphene unit cell atoms. A variety of experiments have shown that non-Bernal
rotations restore this broken symmetry; consequently, these stacking varieties
have been the subject of intensive theoretical interest. Most theories predict
substantial changes in the band structure ranging from the development of a Van
Hove singularity and an angle dependent electron localization that causes the
Fermi velocity to go to zero as the relative rotation angle between sheets goes
to zero. In this work we show by direct measurement that non-Bernal rotations
preserve the graphene symmetry with only a small perturbation due to weak
effective interlayer coupling. We detect neither a Van Hove singularity nor any
significant change in the Fermi velocity. These results suggest significant
problems in our current theoretical understanding of the origins of the band
structure of this material.Comment: 7 pages, 6 figures, submitted to PR
Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5
In this paper, we present photoemission experiments on the hole doped Haldane
chain compound . By using the photon energy dependence of
the photoemission cross section, we identified the symmetry of the first
ionisation states (d type). Hole doping in this system leads to a significant
increase in the spectral weight at the top of the valence band without any
change in the vicinity of the Fermi energy. This behavior, not observed in
other charge transfer oxides at low doping level, could result from the
inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization
enhancement due to the shortening of the relevant Ni-O distance in the
localized hole-doped regions.Comment: 5 pages, 4 figure
- …
