2,893 research outputs found

    Supersymmetric predictions for the inclusive b→sγb\to s\gamma decay

    Full text link
    We study the penguin induced transition b→s γb\to s\ \gamma in the minimal N=1 supersymmetric extension of the Standard Model with radiative breaking of the electroweak group. We include the effects of one-loop corrections to the Higgs potential and scalar masses. We show that the present upper and lower experimental limits on the inclusive decay sharply constrain the parameter space of the model in a wide range of tan⁥ÎČ\tan\beta values. The implications of the recently advocated relation ∣BâˆŁâ‰„2|B|\ge 2 for the bilinear SUSY soft breaking parameter in grand unified theories are also analyzed.Comment: 23 pages + 12 figures (hardcopies available on request), LATEX, SISSA 40/94/E

    On CP Violation in Minimal Renormalizable SUSY SO(10) and Beyond

    Full text link
    We investigate the role of CP phases within the renormalizable SUSY SO(10) GUT with one 10_H, one 126bar_H one 126_H and one 210_H Higgs representations and type II seesaw dominating the neutrino mass matrix. This framework is non trivially predictive in the fermionic sector and connects in a natural way the GUT unification of b and tau Yukawa couplings with the bi-large mixing scenario for neutrinos. On the other hand, existing numerical analysis claim that consistency with quark and charged lepton data prevents the minimal setup from reproducing the observed CP violation via the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We re-examine the issue and find by inspection of the fermion mass sum rules and a detailed numerical scan that, even though the CKM phase takes preferentially values in the second quadrant, the agreement of the minimal model with the data is actually obtained in a non negligible fraction of the parameter space. We then consider a recently proposed renormalizable extension of the minimal model, obtained by adding one chiral 120-dimensional Higgs supermultiplet. We show that within such a setup the CKM phase falls naturally in the observed range. We emphazise the robust predictivity of both models here considered for neutrino parameters that are in the reach of ongoing and future experiments.Comment: 9 pages, 6 figures. Two refs added, discussion expanded. To appear on Phys. Rev.

    Planning for pedestrians: a way out of traffic congestion

    Get PDF
    AbstractThis paper discusses the negative effects of planning for personal motorized mobility, a phenomenon currently taking place in Romanian cities. After presenting the general and particular picture of the increase in private vehicle ownership, it analyse s the subject of pedestrian accessibility by looking into the past and present situation. Based on GIS measurements of population within specific service areas of public facilities, the foreseen solution takes into consideration a flexible way of planning which adapts to the existing urban structure. The results allow conscious planning decisions focused on the type and number of population with good access to these facilities

    Non-extremal fractional branes

    Get PDF
    We construct non-extremal fractional D-brane solutions of type-II string theory at the Z_2 orbifold point of K3. These solutions generalize known extremal fractional-brane solutions and provide further insights into N=2 supersymmetric gauge theories and dual descriptions thereof. In particular, we find that for these solutions the horizon radius cannot exceed the non-extremal enhancon radius. As a consequence, we conclude that a system of non-extremal fractional branes cannot develop into a black brane. This conclusion is in agreement with known dual descriptions of the system.Comment: 29 pages, LaTeX. v2: 30 pages; equation (3.4) corrected; typos fixed; discussion in section 3 streamlined and slightly extended; reference adde

    Fermion masses in SUSY SO(10) with type II seesaw: a non-minimal predictive scenario

    Full text link
    A predictive framework for fermion masses and mixing is given by the supersymmetric SO(10) model with one 10, one bar126, one 126 and one 210 Higgs representations, and type II seesaw dominating the neutrino mass matrix. We investigate the origin of the tension between this model and lepton mixing data and refine previous numerical analyses. We discuss an extension of the minimal model that includes one 120 Higgs chiral superfield representation. This exhausts the possible renormalizable contributions to the Yukawa sector. In spite of the increase in the number of parameters the predictivity of the minimal setting is not spoiled. We argue that the contributions to fermion masses due to the doublet components of 120 can be naturally small compared to those of 10 and 126, thus acting as a perturbation in the fermion mass generation. The antisymmetric nature of the 120 Yukawa coupling affects at leading order the determination of the mixing angles and it allows to remove the inconsistencies between predictions and data on the neutrino parameters. An improvement in the experimental bound on |Ue3| can tell this scenario from the minimal model.Comment: 11 pages, 3 figures; Note and references added on new KamLAND dat

    Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs

    Get PDF
    We present a detailed study of quark and lepton mass spectra in a SO(10) framework with one 10_H and one \bar{126}_H Higgs representations in the Yukawa sector. We consider in full generality the interplay between type-I and type-II seesaw for neutrino masses. We first perform a \chi^2 fit of fermion masses independent on the detailed structure of the GUT Higgs potential and show the regions in the parameter space that are preferred by the fermion mass sum rules. We then apply our study to the case of the minimal renormalizable SUSY SO(10) GUT with one 10_H, one \bar{126}_H, one 126_H, and one 210_H Higgs representations. Requiring that proton decay bounds are fulfilled we identify a very limited area in the parameter space where all fermion data are consistently reproduced. On the other hand we show that in all cases gauge coupling unification in the supersymmetric scenario is severely affected by the presence of lighter than GUT (albeit B-L conserving) states. We then conclusively show that the minimal supersymmetric SO(10) scenario here considered is not consistent with data. The fit of neutrino masses with type-I and type-II seesaws within a renormalizable SO(10) framework strongly suggests a non-SUSY scenario for gauge unification

    Feynman Rules in the Type III Natural Flavour-Conserving Two-Higgs Doublet Model

    Full text link
    We consider a two Higgs-doublet model with S3S_3 symmetry, which implies a π2\pi \over 2 rather than 0 relative phase between the vacuum expectation values and and . The corresponding Feynman rules are derived accordingly and the transformation of the Higgs fields from the weak to the mass eigenstates includes not only an angle rotation but also a phase transformation. In this model, both doublets couple to the same type of fermions and the flavour-changing neutral currents are naturally suppressed. We also demonstrate that the Type III natural flavour-conserving model is valid at tree-level even when an explicit S3S_3 symmetry breaking perturbation is introduced to get a reasonable CKM matrix. In the special case ÎČ=α\beta = \alpha, as the ratio tan⁥ÎČ=v2v1\tan\beta = {v_2 \over v_1} runs from 0 to ∞\infty, the dominant Yukawa coupling will change from the first two generations to the third generation. In the Feynman rules, we also find that the charged Higgs currents are explicitly left-right asymmetric. The ratios between the left- and right-handed currents for the quarks in the same generations are estimated.Comment: 16 pages (figures not included), NCKU-HEP/93-1

    Soil is a net source of methane in tropical African forests

    Get PDF
    Research Highlights: Monitoring of soil CH4 fluxes in African tropical forest conducted run for almost two years, contributing to the scant information on greenhouse gas (GHG) fluxes from forests available from this region. Data showed that the forest soil acted as a net yearly source of CH4. Hotspots of CH4 emissions were measured both in upland and lowland areas of the forest, and on an annual basis they overcame the soil CH4 sink during drier periods or in well‐drained areas. Background and Objectives: Atmospheric studies indicate that tropics are a strong CH4 source. Regional budgets attribute the majority of this source to wetland ecosystems and flooded lowland forests, whereas un‐flooded forests are considered net CH4 sinks, although few studies in tropical forests, in particular in Africa, are available. The present work aims to contribute to this knowledge gap. Materials and Methods: Monitoring campaigns were conducted along the year in the tropical forest of the Ankasa National Park, Ghana, in two contrasting environments, uphill and downhill, using close static chambers coupled with gas chromatography. Results: The uphill area was a net weak CH4 sink with mean daily fluxes ranging from −1.29 to 0.44 mg CH4 m−2 d−1. The downhill area was a significant CH4 source with mean daily fluxes ranging from −0.67 to 188.09 mg CH4 m−2 d−1 and with peaks up to 1312 mg CH4 m−2 d−1 in the wet season. Conclusions: The net annual soil CH4 budget for the Ankasa Park, normalizing the proportion of downhill areas over the whole park surface, was a source of about 3.3 kg CH4 ha−1 yr−1. Overlooking such areas might lead to underestimates of the total CH4 source strength of forested areas
    • 

    corecore