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Abstract

We construct non-extremal fractional D-brane solutions of type-II string theory
at the Z2 orbifold point of K3. These solutions generalize known extremal fractional-
brane solutions and provide further insights intoN = 2 supersymmetric gauge theories
and dual descriptions thereof. In particular, we find that for these solutions the
horizon radius cannot exceed the non-extremal enhançon radius. As a consequence,
we conclude that a system of non-extremal fractional branes cannot develop into a
black brane. This conclusion is in agreement with known dual descriptions of the
system.
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3 Enhançon versus horizon 11
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1 Introduction

Fractional D-branes [1–3] have proved an interesting and rich subject in string theory,
generalizing the ordinary D-branes of type-II string theory. They differ from the latter
not only because they carry fractional charges but also in that their world-volume gauge
theories are in general non-conformal. In particular, fractional D-branes with eight su-
percharges can be obtained from type-II string theory on an orbifold limit of K3, the
simplest one being T 4/Z2, or on the orbifold limit of an ALE space, which is C

2/Γ where
Γ corresponds to the ADE-classified finite symmetry group of the ALE space [4, 5].

In the present paper we consider the type-II string theories on the T 4/Z2 orbifold
limit of K3. For these cases, fractional D-branes have half the charge of the usual reg-
ular D-branes. Their world-volume theories contain only a vector multiplet, while the
regular branes carry in addition a hypermultiplet. The extremal supergravity solutions
for this class of fractional branes were found in ref. [6]. Here we study the non-extremal
generalization of these solutions.

The three main reasons for studying this problem are as follows. The first is that it is
interesting to determine whether fractional branes in string theory are dynamical objects
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in the same sense as ordinary D-branes. Making the branes non-extremal tests whether it
is possible to consider thermally excited fractional D-branes.

The second reason is related to the fact that the gauge theories living on the fractional
branes that we consider are 3+1-dimensional pure N = 2 super-Yang–Mills (SYM) theory
or dimensional reductions thereof. These are non-conformal theories and it is of principal
interest to extend the Maldacena conjecture [7–9] to such settings. To make the fractional
branes non-extremal would in principle enable us to obtain a dual description of finite-
temperature pure SYM theories with eight supercharges.

The study of a supergravity/gauge-theory duality for pure SYM with eight super-
charges was initiated in ref. [10] by considering D-branes wrapping K3, a setup which is
T-dual to the one with fractional D-branes [10–12]. The upshot of the analysis in ref. [10]
is that the supergravity solution dual to pure SYM with eight supercharges has a repulson
singularity [13–15] near the center. However, this repulson can be excised from the solu-
tion by noticing that at a certain distance from the center, the so-called enhançon radius,
an abelian field in the effective theory becomes non-abelian, the gauge symmetry being
enhanced from U(1) to SU(2). This means that the low-energy effective theory contains
additional massless fields which have to be taken into account. Moreover, a probe com-
putation shows that D-brane probes become massless as one reaches the enhançon radius.
The interpretation of this phenomenon is that there is a spherical distribution of D-branes
at the enhançon radius with flat space inside the sphere [10]. Similar results have subse-
quently also been obtained for other configurations of wrapped branes [16–18] as well as
for fractional brane configurations both on non-compact orbifolds like C

2/Γ [19–24] and
on the compact T 4/Z2 orbifold limit of K3 [6].

The third main reason for our interest in non-extremal fractional branes is the inter-
play between the non-extremality features and the enhançon mechanism; since extremal
fractional branes on T 4/Z2 have an enhançon radius [6], it is of interest to see whether
a horizon covering the enhançon can develop and thus provide another kind of excision
mechanism for the fractional branes. For systems of D6-branes wrapped on K3, this ques-
tion has been addressed in refs [10, 25] where it was found that a horizon can indeed be
formed. However, in the supergravity/gauge-theory duality the horizon radius corresponds
to energies that are beyond reach in the pure SYM theory. This observation has been re-
garded as evidence for the conjecture that the dual of pure SYM with eight supercharges
is a non-gravitational theory [10, 26]. As we are going to show, fractional branes provide
further corroboration of this conjecture.

For N = 1 SYM in 3+1 dimensions the thermal version of the Klebanov–Strassler
setup [27] that builds on the paper [28] has been explored in refs [29–31]. Here it has
proved very hard to find an exact non-extremal solution. For the N = 1∗ SYM theory
progress has been made in refs [32–35], building on the setup of ref. [36] describing zero-
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temperature N = 1∗ SYM. In the latter case, decoupling the scale of confinement from
the string scale in the NS5-brane world-volume theory has turned out to be problematic,
making it difficult to do computations. However, the problems encountered in N = 1 and
N = 1∗ SYM seem rather unrelated to the problems of finding a non-extremal dual to
N = 2 SYM.

The summary and organization of the paper are as follows. In section 2 we present
the supergravity solutions describing non-extremal fractional branes at low energy. More
precisely, we consider a bound state of M fractional Dp-branes of type-II string theories
on the orbifold T 4/Z2. Our solutions thus generalize the fractional-brane solutions of
ref. [6]. Their structure turns out to be somewhat simpler than that of those found in
analogous investigations of the N = 1 theory in refs [29–31]. In section 3 we discuss the
physical properties of the non-extremal solutions, focusing on the interplay between the
non-extremal version of the enhançon and the black-hole horizon r0. In particular, we
find that the horizon radius cannot exceed the enhançon radius. As a consequence, we
conclude that these systems of non-extremal fractional branes cannot develop into black
branes. The consequences of the latter conclusion and further interpretation of the results
are our primary concerns in section 4. Finally, some computational details are given in
an appendix. There we also discuss another solution branch, with well-defined black-hole
thermodynamics but the physical interpretation of which is presently not clear.

2 The non-extremal solutions

In this section we present the non-extremal low-energy supergravity solutions for fractional
Dp-branes on K3 in the T 4/Z2 orbifold limit. For the type-IIA case, the relevant truncated
six-dimensional supergravity action was obtained in ref. [6] by compactification of type-IIA
supergravity on T 4/Z2, and used to construct extremal solutions for fractional D0- and
D2-branes. After deriving the corresponding model on the type-IIB side, we will consider
the non-extremal generalizations of these solutions for the full range p = 0, 1, 2, 3.

2.1 Fractional branes

Fractional branes [1–3] are certain types of BPS D-branes that one encounters when con-
sidering string theory in singular backgrounds. They can be defined in many different
(but equivalent) ways. Probably, the most intuitive way to understand their properties is
through their description as higher-dimensional D-branes wrapped on a vanishing cycle of
the singular manifold [37, 38]. This geometric picture makes manifest the characteristic
feature of fractional branes as being stuck at the singularity while free to move in the
flat transverse directions only. This viewpoint also shows why they lack the world-volume
degrees of freedom associated to fluctuations in the orbifold directions which correspond,
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in general, to hypermultiplet excitations. Moreover, as will become clear below, this also
automatically accounts for the coupling of fractional branes with the twisted sector of
string theory on the orbifold. We refer to ref. [39] for a recent review on the properties of
fractional branes on orbifolds for theories with eight supercharges.

Let us now focus on our main case of interest. The K3 manifold has dim(H2(K3)) = 22
two-cycles, on a space of signature (19,3). At the Z2 orbifold point, there are three self-
dual and three anti-selfdual cycles from the six two-cycles in H2(T 4), which are invariant
under the Z2 involution. In addition, there are 16 anti-selfdual cycles that come from
the collapsed spheres at the 16 orbifold singularities. A fractional Dp-brane is then a
D(p+2)-brane wrapped on one of the these cycles, C, in the Z2 orbifold limit of K3. The
presence of a background NS-NS two-form flux through the shrinking cycle makes the
D-brane tension non-vanishing. The background value of this flux is dictated to be

b0 =
∫
C
B(2) =

1
2
(2π

√
α′)2 (2.1)

by the requirement of conformal invariance of the string world-sheet in the orbifold back-
ground [40]. The effective theory describing the dynamics of such a brane at low energy
is a (p+1)-dimensional pure SYM theory with eight supercharges. From the closed string
theory point of view, this translates into the fact that fractional branes couple to both the
untwisted and the twisted sector of string theory on the orbifold.

At low energy, in the infinite-volume limit of T 4/Z2, a given fractional Dp-brane simply
couples to the metric, the dilaton and the RR (p+1)-form potential in the untwisted sector,
and to a scalar field and a (p+1)-form potential in the twisted sector. The two latter
correspond, respectively, to the zero mode of the NS-NS B(2) field and of the RR (p+3)-
form potential when “dimensionally reduced” on the shrinking two-cycle, and belong to
a non-gravitational multiplet of the effective supergravity theory [37, 38]. Denoting by
ω(2) the closed differential two-form Poincaré dual to the vanishing two-cycle C on which
the branes are wrapped, the relations between higher-dimensional forms and twisted fields
read

B(2) = b ω(2) , C(p+3) =
√

2V A(p+1) ∧ ω(2) . (2.2)

In the compact case (anticipated here by the introduction of the dimensionful constant V

to be defined shortly) the effective six-dimensional theory is augmented by the zero modes
of massless fields on the internal manifold. However these come only from the untwisted
sector since, by construction, the twisted fields have no dynamics on the internal space.
For ω(2) we adopt the following conventions:∫

C
ω(2) = 1 ,

∫
C2/Z2

∗ω(2) ∧ ω(2) =
1
2

, ω(2) + ∗ω(2) = 0 . (2.3)
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2.2 The actions

Let us start by fixing our conventions and presenting the consistently truncated six-
dimensional actions describing the dynamics of the supergravity fields to which the frac-
tional Dp-branes couple. As just discussed, the gauge fields that enter the solution for a
given p are the two (p+1)-form potentials C(p+1) and A(p+1). From the twisted scalar field
arising from the NS-NS two-form potential we separate out a fluctuating part b̃ according
to

b =
1
2

√
V∗ +

√
2V b̃ , V∗ = (2π

√
α′)4 , (2.4)

where V is the volume of the compact space T 4/Z2 and V∗ is introduced as a shorthand
notation. Furthermore, the Kaluza–Klein reduction of the metric gives rise to four scalar
fields, eηa , a = 6, . . . , 9. Under the assumption of homogeneity in the compactified direc-
tions these are equal and can be replaced by a single scalar field defined as η =

∑9
a=6 ηa.

The dimensionally reduced dilaton φ = φ|d=10 − 1
2η completes the scalar field content.

For the case p = 0 the truncated bosonic d = 6 action governing the dynamics of these
fields was derived in ref. [6], together with the electro-magnetically dual two-brane case.
From these results the corresponding action for the fractional D3-brane on the type-IIB
side can readily be inferred. These three actions take the form1

S
(p=0,2,3)
bulk =

V

2κ2

∫ {
d6x

√−gR + ∗dφ ∧ dφ +
1
4
∗dη ∧ dη +

1
2
e−η ∗db̃ ∧ db̃

+ e(1−p)φ
[1
2
eη ∗G(p+2) ∧G(p+2) +

1
2
∗F̃(p+2) ∧ F̃(p+2)

]}
, (2.5)

where κ = 8π7/2gsα
′2 and

G(p+2) = dC(p+1) , F̃(p+2) = dA(p+1) + db̃ ∧C(p+1) (2.6)

are the gauge-invariant field strengths of the untwisted- and twisted-sector potentials
C(p+1) and A(p+1), respectively.

For the remaining case, p = 1, some subtleties arise because the field strength F̃(3)

is self-dual, a property inherited from its ten-dimensional type-IIB five-form parent. As
usual, the self-duality condition has to be imposed on shell. With this proviso in mind we
can nevertheless write a truncated d = 6 gravity action also for the fractional D-string:2

S
(p=1)
bulk =

V

2κ2
10

∫ {
d6x

√−gR + ∗dφ ∧ dφ +
1
4
∗dη ∧ dη +

1
2
e−η ∗db̃ ∧ db̃

+
1
2
eη ∗G(3) ∧G(3) +

1
4
∗F̃(3) ∧ F̃(3) −

1
2
A(2) ∧G(3) ∧ db̃

}
. (2.7)

1Our conventions are ∗ ξ(6−n) = 1
n!

dxµ1 ∧ . . . ∧ dxµn εµ1...µn
µn+1...µ6 ξµn+1...µ6 and ε012345 = +1. The

RR field strengths in ten dimensions were defined as Ĝ(n+1) = dĈ(n) + Ĥ(3) ∧ Ĉ(n−3).
2This action results from taking a type-IIB action in ten dimensions compatible with an anti-selfdual

five-form field strength Ĝ(5), and using the conventions (2.3) in the Kaluza–Klein reduction on T 4/Z2.
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The C(2) equation of motion is compatible with the self-duality constraint ∗F̃(3) = F̃(3), a
fact which relies crucially on the presence of the Chern-Simons term.

In solving the equations of motion obtained from the actions (2.5) and (2.7) one should
also specify the boundary conditions at infinity that the various fields should satisfy
(i.e. the mass and the charges of the soliton). We are interested in describing a gen-
eral bound state of non-extremal fractional Dp-branes whose corresponding supergravity
solution should match the extremal one at infinity. The boundary conditions at infinity
for the latter are encoded in the bosonic world-volume action describing the low-energy
dynamics of an extremal fractional brane. For the case at hand this action has been
derived in ref. [6] and reads

Swv = −Tp

2κ

∫
dp+1ξ

√−g e−η/2e−(1−p)φ/2

(
1 + 2

√
2V
V∗

b̃

)

+
Tp

2κ

∫ [
C(p+1)

(
1 + 2

√
2V
V∗

b̃

)
+ 2
√

2V
V∗

A(p+1)

]
, (2.8)

where Tp =
√

π(2π
√

α′)3−p. The world-volume action for a stack of M coincident fractional
Dp-branes is obtained simply by multiplying the above action by M (this will be implicitly
assumed in what follows).

2.3 Ansätze and solutions

Below we present the solutions of the equations of motion, given in appendices A.1 and A.2,
referring to appendix A.3 for an outline of their derivation. We will wherever possible
treat the cases p = 0, 1, 2, 3 in parallel. As far as the starting-point—i.e. the ansatz for
the metric—is concerned, the three-brane (being of codimension two in six dimensions)
however needs some special consideration. The solutions, nevertheless, share a common
structure for all four cases as will become clear below.

Let us first discuss the lower-dimensional cases, p = 0, 1, 2, for which the standard
non-extremal p-brane ansatz applies:

ds2 = H
p−3
4

(
− fdt2 +

p∑
i=1

(dxi)2
)

+ H
p+1
4
(
f−1dr2 + r2dΩ2

4−p

)
. (2.9)

The non-extremality is introduced by the function f which, like H, depends on the trans-
verse radial coordinate only. It is constrained by the equations of motion to satisfy the
harmonic equation

f ′′ +
4− p

r
f ′ = 0 . (2.10)

Requiring the non-extremal solution to approach the extremal one at infinity, the solution
to eq. (2.10) takes the form

f = 1−
(r0

r

)3−p
, (2.11)
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with the horizon radius r0 governing the degree of non-extremality.3

The upshot of the analysis of appendix A.3 is that the non-extremal solutions, in
addition to f , can be expressed entirely in terms of two harmonic functions, h1 and h2,
which in turn depend on three parameters: the horizon radius r0 and two charges, q1 and
q2, depending linearly on the number of branes which act as sources for the solution. More
specifically, the scalar fields are given by

eφ = H
1−p
4 , eη =

H

h2
1

, b̃ =
q2

q1

(
h2

h1
− 1
)

, (2.12)

while the gauge potentials take the form

C0...p = − q2

r3−p

h3

H
, A0...p = − q1

r3−p

1
h1

, (2.13)

the associated field strengths (defined in eq. (2.6) above) being

Gr0...p =
(3− p)q2

r4−p

h1h2

H2
, F̃r0...p =

(3− p)q1

r4−p

1
H

. (2.14)

The functions H and h3 entering the solution read

H =
(

1 +
1
2

q2
2

q2
1

)
h2

1 −
1
2

q2
2

q2
1

h2
2 , h3 =

1
2
(h1 + h2) , (2.15)

where the two basic harmonic functions are

hi = 1−
(ri

r

)3−p
, i = 1, 2 . (2.16)

The radial parameters of these functions are given by

r3−p
1 =

1
2
r3−p
0 +

√
2q4

1 + (q2
1 + q2

2)r
2(3−p)
0 − 2q2

1Λ

2
√

2q2
1 + q2

2

, (2.17)

r3−p
2 =

1
2
r3−p
0 +

√
2q4

1 + (q2
1 + q2

2)r
2(3−p)
0 + 2q2

1Λ

2
√

q2
2

, (2.18)

where

Λ ≡
√

q4
1 + (q2

1 + q2
2)r

2(3−p)
0 +

1
4
r
4(3−p)
0 . (2.19)

As already noticed, the solution we have found is completely fixed by extracting the
relation between the free-supergravity values of the charges q1 and q2 and those dictated
by the world-volume action (2.8) for the M fractional branes. Using eqs (A.71) and (A.72)

3Although the metric (2.9) develops a horizon at r0 we shall see in the next section that the supergravity

approximation ceases to be valid at a radius re strictly larger than r0. Keeping this in mind, we shall

nevertheless refer to r0 as the horizon radius.

8



and equating the corresponding charges with the coupling to the twisted and untwisted
potentials A0...p and C0...p in the WZ action one gets

q1 =
√

2V
V∗

Qp M , q2 = Qp
M

2
, (2.20)

where

Qp =
2
kp

Tp κ

Ω4−p V
, Ω4−p =

2π(5−p)/2

Γ(1
2(5− p))

, (2.21)

Ω4−p being the volume of the unit (4−p)-sphere surrounding the p-branes and kp = 3− p

for p < 3 while k3 = 1.4

As a consistency check let us also take the extremal limit, r0 = 0. Assuming the
charges to be positive, as we will from now on, we obtain

hextr
1 = 1 , hextr

2 = 1− q2
1

q2

1
r3−p

, Hextr = 1 +
q2

r3−p
− q2

1

2r2(3−p)
, (2.22)

so that the solution of ref. [6] is recovered:

eηextr = Hextr , b̃extr = − q1

r3−p
= Aextr

0...p , Cextr
0...p = H−1

extr − 1 . (2.23)

Note that the structure of the function H that determines the non-extremal metric and
the scalars is the same as for the extremal case; while the coefficients of course differ, in-
troducing a non-extremality parameter gives no terms beyond the r−2(3−p) correction, the
latter being the usual fractional brane modification to the harmonic function governing the
regular-brane solution. For the other fields the non-extremal modifications are somewhat
more intricate. Nevertheless, for our class of non-extremal fractional branes, these modi-
fications are entirely due to the non-triviality of the harmonic function h1 for r0 > 0. In
particular, we note that, contrary to the extremal case, the non-extremal twisted fields do
get corrections with respect to their harmonic asymptotic behavior. The absence of such
corrections was taken as input for the ansatz relevant to extremal fractional branes [6], and
was argued (for the NS-NS twisted scalar b̃) to be a manifestation of the fact that N = 2
SUSY only allows for one-loop perturbative corrections. The fact that this property ceases
to hold for our non-extremal generalization suggests that the non-extremality parameter
r0 indeed does switch on a temperature in the system.

Turning to the case p = 3, the appropriate non-extremal ansatz for the metric reads [41]

ds2 = −fdt2 +
3∑

i=1

(dxi)2 +
( r̃

r

)2
H
(
f−1dr2 + r2dθ2

)
, (2.24)

4The solution describing a composite bound state of M fractional and N regular Dp-branes is identical

to the one we have discussed so far, the only difference being that the untwisted charge q2 will now be

q2 = Qp(
M
2

+ N). By taking M = 0 one gets q1 = 0 and q2 = QpN , giving back the usual regular brane

solution, with no coupling to twisted fields.
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where r̃ is an (as yet) undetermined radial parameter. Using this ansatz, the analysis in
appendix A.3 can be done in parallel with the lower-dimensional cases. As a consequence,
the expressions listed above for the metric, the scalars and the gauge field strengths (upon
substituting (3 − p) 7→ 1) in terms of the functions h1 and h2 are valid also for p = 3.
Although the reason is slightly less obvious, by using the mapping r−(3−p) 7→ log(rΛ/r)
the same turns out to be the case for the gauge potentials in (2.13), giving

C0123 = −q2
h3

H
log

rΛ

r
, A0123 = − q1

h1
log

rΛ

r
. (2.25)

Here rΛ can be interpreted as a long-distance cut-off in the transverse radial direction of
the three-brane world volume, corresponding to a UV cut-off on the dual gauge-theory side.
This mapping originates from the harmonic functions which in two dimensions involve a
logarithm. The function f , for instance, again satisfies the harmonic equation (2.10) but
the solution now reads

f = 1− a0 log
rΛ

r
. (2.26)

The dimensionless non-negative parameter a0 governs the degree of non-extremality. As
will become evident below, a0 can be viewed as the direct formal analogue of the parameter
r0 in the solutions for the lower-dimensional branes. The “horizon radius”5 for the three-
brane is r0 = rΛe−1/a0 and the extremal limit is obtained by letting a0 → 0 with rΛ fixed.
Moreover, it is convenient to identify the parameter r̃ in (2.24) with rΛ since the latter
sets the length scale of the transverse geometry.

Hence, the conditions that h1 and h2 be harmonic now imply

h1 = 1− a1 log
rΛ

r
, h2 = 1− a2 log

rΛ

r
. (2.27)

In an exact analogy with the results (2.17) and (2.18) for p < 3 the parameters a1 and a2

are given by

a1 =
1
2
a0 +

√
2q4

1 + (q2
1 + q2

2)a
2
0 − 2q2

1Λ
2
√

2q2
1 + q2

2

, (2.28)

a2 =
1
2
a0 +

√
2q4

1 + (q2
1 + q2

2)a
2
0 + 2q2

1Λ
2
√

q2
2

, (2.29)

with

Λ =

√
q4
1 + (q2

1 + q2
2)a

2
0 +

1
4
a4

0 . (2.30)

The reason for these close formal similarities between p = 3 and the lower-dimensional
cases is explained in section A.3.

5We write the term within quotes since the transverse space is two-dimensional and black holes therefore

can never develop for p = 3.

10



Taking the extremal limit, the gauge potentials (2.25) simplify to

Cextr
0123 = H−1

extr − 1 , Aextr
0123 = −q1 log

rΛ

r
, (2.31)

where Hextr = 1+q2 log rΛ
r − 1

2q2
1

(
log rΛ

r

)2. In addition we have b̃extr = −q1 log rΛ
r , with the

remaining fields formally identical to their lower-dimensional counterparts. Note that in
the extremal limit of the three-brane solution we have φ = −1

2η. From the definition of φ

this relation immediately implies that the ten-dimensional dilaton is constant, in agreement
with the fractional D3-brane solution of refs [19,20] for the non-compact orbifold spacetime
R

1,5 × C
2/Z2.

3 Enhançon versus horizon

In this section we first review the enhançon mechanism and describe its manifestation
in the case at hand. Then we examine the interplay between the event horizon and the
enhançon shell.

3.1 Review of the enhançon

Supergravity solutions of brane configurations which have pure SYM with eight super-
charges as their low-energy world-volume theories are in general plagued by naked singu-
larities. This is in particular true for fractional branes and, more generally, for D-branes
wrapped on topologically non-trivial cycles. The naked singularities one encounters are of
repulson type [13,15,14] and can be excised by the so-called enhançon mechanism [10].

The logic of the enhançon mechanism is as follows. Far away from the source we
have a perfectly valid supergravity solution. However, when approaching the source there
is a certain radius re, called the enhançon radius, at which the effective supergravity
description requires extra massless fields because an abelian field becomes non-abelian, i.e.
its gauge symmetry becomes SU(2) instead of U(1). A brane-probe calculation shows that
the tension of the probe vanishes precisely at the enhançon radius. The interpretation of
this phenomenon is that the branes are located at the spherical shell r = re. The presence
of the branes at r = re then obviously modifies the supergravity solution for r < re with
the effect that the singularity is excised [10,25].

For fractional branes, the symmetry enhancement is due to the fact that the NS-NS
two-form flux through the cycle flows from the value 1/2 at infinity to 0 at the enhançon
radius. When the flux vanishes, all four parameters of the cycle that the brane is wrapped
on are zero and this corresponds to a symmetry enhancement point in the moduli space.
The new massless non-abelian degrees of freedom then precisely originates from the frac-
tional branes flowing to a point where they are tensionless.
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For the extremal fractional D-branes on T 4/Z2 the enhançon mechanism has been
examined in ref. [6]. As we are going to discuss in the next section, the presence of the
enhançon has crucial consequences for the decoupling limit and for the nature of the gauge-
theory/gravity duality for this kind of system. It is therefore important to investigate if
and how the enhançon is modified in the non-extremal case we are discussing, and more
specifically what the relation between the event horizon and the enhançon is.

As discussed in the previous section, fractional Dp-branes are a particular kind of
wrapped D(p+2)-branes arising in orbifold compactifications of string theory. While the
geometric volume of the compact two-cycle characterizing the orbifold is identically zero,
there is a non-trivial NS-NS two-form background flux on it displayed in (2.1) which makes
the effective stringy volume asymptotically non-vanishing. In fact, as already explained
in the previous section, this asymptotic value is modified by the presence of the fractional
branes (either extremal or non-extremal). Let us recall the relation between the fields
entering the solution discussed in section 2 and the NS-NS two-form flux

b =
∫
C
B(2) =

1
2

√
V∗ +

√
2V b̃ (r) , (3.1)

where we recall that V is the volume of the compact orbifold and V ∗ = (2π
√

α′)4 as
defined in (2.4). From the above considerations it follows that the enhançon is located at
the radius re determined by

1 + 2
√

2V
V∗

b̃ (re) = 0 . (3.2)

This equation gives the position of the enhançon in the general case. In the extremal limit
it reduces to the result found in ref. [6].

We can now check that fractional D-brane probes indeed become tensionless on the
enhançon shell. One has simply to consider the DBI action for the probe, choose static
gauge and let the transverse coordinates depend on time only, expand the action up to
quadratic terms in the derivatives of the fields and finally evaluate it in the background
generated by the source branes. The DBI action for a fractional Dp-brane probe is

SDBI = − Tp

2κ

∫
dp+1ξ

√−g e−η/2e−(1−p)φ/2

(
1 + 2

√
2V
V∗

b̃

)
. (3.3)

By proceeding as outlined above one easily sees that the brane becomes tensionless when
eq. (3.2) is satisfied. More precisely, the kinetic term of its effective lagrangian is

T (r, ṙ) =
TpV1

2κ
H(r)√
f(r)

h1

(
1 + 2

√
2V
V∗

b̃ (r)

)(
ṙ2

f
+ r2d2Ω̇4

)
. (3.4)

This equation shows that the probe effective tension is r-dependent and that at the distance
where eq. (3.2) is satisfied the brane becomes tensionless, as promised.
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As explained above, the enhançon is the locus where the U(1) gauge symmetry is
enhanced to SU(2). Indeed the extra massless fields giving the enhanced gauge symmetry
correspond to tensionless fractional D-particles in type IIA and to tensionless fractional
D-strings in type IIB [42].

3.2 Application to non-extremal fractional branes

For our class of non-extremal fractional branes, we can obtain a very simple expression for
the enhançon. By substituting the solution discussed in the previous section, in particular
eqs (2.12) and (2.16), in eq. (3.2), one obtains,

r3−p
e = 2

√
2V
V∗

q2

q1

(
r3−p
2 − r3−p

1

)
+ r3−p

1 = r3−p
2 , (3.5)

where in the last step we have used the relation (2.20). A completely analogous expression
holds for ae, and thus for re, in the three-brane case (recall that re = rΛe−1/ae).6

We now turn to examining the position of the enhançon shell relative to that of the
event horizon. Using eqs (2.18) and (2.19), it is easy to see from eq. (3.5) that the enhançon
always lies outside the horizon, no matter the value of r0. This means that in the region
of validity of the supergravity approximation, the bound state never develops into a black
brane. This might seem puzzling, since one would think that for large enough mass the
system would indeed develop into a black brane, while the above equations show that the
enhançon increases with r0 faster than r0 itself. However, one has to remember that the
energy density of this configuration is not concentrated in the center of the solution, but
rather spread out on the enhançon shell. Indeed, the fact that we cannot arrange for the
horizon to lie outside the enhançon shell is nicely consistent with the fact that, while the
mass is not bounded, the density of mass is. To see this, note first that the density of
mass is the total mass M divided by the volume Vtot that we can fit the system into. The
mass M goes like r3−p

0 while the volume Vtot goes like r5−p
e , and hence M/Vtot actually

decreases as we increase r0, since r0 is less than re.
One can also try to extend the solution to the interior of the enhançon shell. Fractional

branes cannot get inside the enhançon since their tension vanishes there and their energy
(and charge) is believed to be distributed on the enhançon shell. Therefore, the extremal
solution is flat in the interior and the energy density vanishes there [10,43]7. However, by
making the solution non-extremal one could imagine creating a neutral black hole on the
inside, characterized by an internal horizon radius r′0. One could then try to increase r′0

6As already mentioned, black holes cannot appear in 2+1 dimensions so we exclude the three-brane

case from the following discussion.
7By studying the Seiberg–Witten curve it has been explicitly shown that the supergravity fields should

be constant in the interior [44]. On the other hand, to discuss the system at the enhançon scale one should

include the extra massless fields into the analysis.
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enough to make it larger than the enhançon, thus allowing the system to develop into a
black brane.8

If we demand that such an interior black hole be in equilibrium with the branes at
the enhançon shell, we can in principle find r′0 in terms of r0 and M . This raises the
interesting question whether the interior horizon can reach the enhançon radius. Unfor-
tunately, we cannot answer this question in a precise way since we do not understand
non-extremal fractional branes sufficiently well to determine when we have thermodynam-
ical equilibrium. However, the fact that the density M/Vtot, as defined above, decreases
for increasing r0 makes it seem unlikely that by increasing r0 and thereby decreasing the
density of mass M/Vtot, one could make the system collapse into a black hole. In the
next section we interpret the fact that the non-extremal fractional-brane system on the
orbifold under study never collapses into a black hole from the perspective of the SYM
theory living on the brane and its supergravity dual.

Let us end the present section with a further comment and a puzzle.9 The discussion
so far can readily be extended to the more general bound states where N regular branes
are also present. As noticed in the previous section, the only modification of the solution is
that we now have q2 = Q2(M/2+N). Probing the geometry with regular branes does not
give any information on the enhançon locus, of course, since regular branes do not couple
to the B(2)-flux and are insensitive to the enhançon. On the other hand, by repeating the
fractional-brane probe computation as before, the enhançon radius is now found to be

re =
(

1 + 2
N

M

)
(r2 − r1) + r1 . (3.6)

Surprisingly, when examining the relative positions of the enhançon and the horizon, the
conclusions do not change with respect to the pure fractional-brane case. Indeed, we have
to examine whether the inequality r0 > re could possibly hold now. By using eq. (A.60)
and introducing the variable α = r1/r0 one finds that this relation reduces to

4Nα2 + (M − 4N)α −M > 0 . (3.7)

From the first line of table 1 in the appendix one can see that this inequality is never
satisfied, indicating that r0 is always smaller than re, even in the presence of regular
branes and regardless of the relative value of N with respect to M . This contrasts with
the result found in refs [10,25] for branes wrapped on K3. However, the two systems are
different. In our case regular branes, as already noticed, do not feel the enhançon and a
regular D-brane probe can thus go all the way to the center r = 0. Indeed, by evaluating

8Obviously, we would then have to jump to another branch of the solution. In terms of the four branches

of the solution summarized in table 1 in section A.4 we should jump from branch I to branch IV.
9For simplicity of notation we give expressions appropriate for the two-brane case, although the discus-

sion applies generally.
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eq. (3.7) at r0 = 0 one gets an N -independent expression for re despite the presence of
regular branes in the background. More specifically, one finds that re ∼ M at extremality
in both eq. (3.5) and eq. (3.6). The extremal N -regular/M -fractional brane configuration
can therefore be thought of as composed of N regular branes at the origin and M fractional
branes smeared on the enhançon shell. In contrast, for the case discussed in refs [10, 25]
the unwrapped branes (which correspond to regular branes here) do indeed influence the
enhançon at extremality, causing it to decrease in size. When the number of unwrapped
branes exceeds the number of wrapped ones, the enhançon is small enough that, for a
sufficiently large non-extremality parameter r0, the system can be turned into a black
hole with r0 larger than re. In our case the situation is different. Nevertheless, one would
expect a limit N � M in which the enhançon at extremality would be quantitatively
irrelevant and thus should not sensibly affect the regular-brane thermodynamics. In this
respect, it would be very interesting to find the precise relation between r′0 and the external
parameters when imposing thermodynamical equilibrium between the internal black hole
with horizon radius r′0 and the enhançon shell.

4 Discussion and conclusions

The upshot of the previous section is that a system of non-extremal fractional branes on
the orbifold T 4/Z2 cannot collapse into a black hole. We discuss in the following a possible
interpretation of this observation in terms of the pure SYM theory living on the fractional
D-branes and the theories dual to them in the sense of the AdS/CFT correspondence [7–9].

It is well known [11] that a transverse T-duality on a fractional brane gives a Hanany–
Witten setup [45]. In particular, a fractional Dp-brane on the orbifold T 4/Z2 is T-dual
to a D(p+1)-brane stretched between two NS5-branes, the distance between them being
proportional to the flux b of the NS-NS two-form of our scenario. Moreover, from the NS5-
brane setup one obtains the wrapped brane setting of refs [10,18] by a transverse T-duality.
All of these brane setups describe at low energies a pure SYM with eight supercharges.
It was argued in refs [10, 26] that the dual of pure SYM with eight supercharges is a
non-gravitational theory. This means that the gravitational multiplet decouples for a
fractional D-brane solution in type-II string theory on T 4/Z2 in the decoupling limit of
the pure SYM on the brane. In the T-dual Hanany–Witten setup this is the same as
saying that gravity decouples from the NS5-branes so that the dual theory is described
by the non-gravitational theory living on the NS5-brane [46–48]. In the fractional-brane
setup, the 5+1-dimensional fields living on the NS5-branes correspond to the fields of
the twisted sector, which indeed have 5+1-dimensional dynamics. In fact, these are the
only fields entering all the relevant gauge-theory quantities in the correspondence while
the contribution from the gravitational multiplet always cancels as shown for instance in
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refs [19,21–23,49–51].
Now, in the decoupling limit r/re is fixed (this is because r ∼ α′ and re ∼ α′g2

YMM and
we have g2

YMM fixed in the limit). Hence, if there had been a horizon r0 > re, it would
have remained after taking the decoupling limit, and we would thus have had a black hole
in the dual theory. This would have been in contradiction with the conjecture that the
dual is a non-gravitational theory. Hence, our analysis can be seen as a further evidence
that the dual theory is indeed non-gravitational. In ref. [10] a similar consideration was
made for D-branes wrapping K3. For that case it was found that the solution can collapse
into a black hole. However, it was subsequently shown that the energies needed for the
solution to collapse to a black hole correspond via the gauge-theory/gravity duality to
energies that are beyond reach in the pure SYM theory. We intend to return to the
decoupling-limit issue for this kind of pure SYM theories [52].
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A Details on the solutions and their derivation

In this appendix we present the derivation of the non-extremal solutions discussed in the
main text. Let us first, however, give the equations that they solve.

A.1 Equations of motion

The equations of motion for the scalar fields encoded in the actions (2.5) for p = 0, 2, 3
and (2.7) for p = 1 turn out to be identical in form:

1√−g
∂µ(

√−g ∂µφ) =
1− p

4
e(1−p)φ

(
eη(G(p+2))

2 + (F̃(p+2))
2
)

, (A.1)

1√−g
∂µ(

√−g ∂µη) = e(1−p)φeη(G(p+2))
2 − e−η ∂µb̃ ∂µb̃ , (A.2)

1√−g
∂µ(

√−g e−η ∂µb̃) = −e(1−p)φ G(p+2) · F̃(p+2) . (A.3)
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Here we have introduced the notation (G(n))2 ≡ G(n) ·G(n) ≡ 1
n!Gµ1...µnGµ1...µn .

For the gauge fields A(p+1) and C(p+1) the case p = 1 differs slightly from the others;
while for p = 0, 2, 3, the equations of motion all take the common form

∂µ1(
√−g e(1−p)φ F̃µ1...µp+2) = 0 , (A.4)

∂µ1(
√−g e(1−p)φ eη G̃µ1...µp+2) = 0 , (A.5)

we obtain instead for p = 1 (in form notation)

d ∗
(
F̃(3) + b̃ ∗G(3)

)
= 0 , (A.6)

F̃(3) − ∗F̃(3) = 0 , (A.7)

d ∗
(
eη G̃(3) +

1
2

b̃2 ∗G(3)

)
= 0 . (A.8)

Here we included the self-duality condition for F̃(3), as this constraint on the solution has
the status of an equation of motion.10 For convenience we have introduced the notation

G̃(p+2) = G(p+2) − e−η b̃ F̃(p+2) . (A.9)

To the above equations should be added the Einstein equations which we shall give
once we have introduced the spherically symmetric ansatz that we will employ. Let us
first, however, mention that under such an ansatz the self-dual fractional D1-brane case
can alternatively be solved by taking a standard electric field-strength ansatz for F̃(3) and
using the equations of motion obtained for p = 1 from the “naive” action (2.5). The
dual, magnetic, components of F̃(3) (as well as the full potential A(2)), if required, can
be obtained by imposing the self-duality condition at the very end. We will adopt this
(standard) effective procedure below, allowing us to discuss the case p = 1 in parallel with
the others.

A.2 The spherical p-brane ansatz

A general ansatz for a metric possessing the symmetries of the non-extremal solution is

ds2 = −B2dt2 + C2
p∑

i=1

(dxi)2 + F 2dr2 + G2r2dΩ2
4−p , (A.10)

where B, C, F and G are functions of the transverse radial coordinate r only. The
equations of motion (A.4)–(A.5) for the two gauge fields A(p+1) and C(p+1) can trivially

10Eqs (A.6) and (A.7) are not independent; the self-duality condition is stronger and implies (A.6).
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be integrated to give11

F̃r0···p = e−(1−p)φBCpF
q̂1

(Gr)4−p
, (A.11)

G̃r0···p = e−(1−p)φe−ηBCpF
q̂2

(Gr)4−p
, (A.12)

where we used the result
√−g = √

gΩ4−pr
4−pBCpFG4−p. The two “hatted” charges, q̂1

and q̂2, introduced as a shorthand notation for this appendix, each absorbs a p-dependent
factor according to

q̂1 = kp q1 , q̂2 = kp q2 , kp =

{
3− p , p = 0, 1, 2

1 , p = 3
, (A.13)

with q1 and q2 being the charges which appear in the solutions and which are natural from
the physical perspective. Defining

b̂ = 1 +
q1

q2
b̃ , (A.14)

we have

Gr0···p = e−(1−p)φ e−ηBCpF
q̂2 b̂

(Gr)4−p
, (A.15)

so that

e(1−p)φ eη(G(p+2))
2 = −e−(1−p)φ e−η b̂2 q̂2

2

(Gr)2(4−p)
, (A.16)

e(1−p)φ(F̃(p+2))
2 = −e−(1−p)φ q̂2

1

(Gr)2(4−p)
. (A.17)

Introducing the notation
L ≡ BCpF−1(Gr)4−p , (A.18)

Y ≡ −e(1−p)φ
(
eη(G(p+2))

2 + (F̃(p+2))
2
)

=
e−(1−p)φ

(Gr)2(4−p)

(
q̂2
1 + q̂2

2e
−η b̂2

)
, (A.19)

the scalar-field equations of motion (A.1)–(A.3) can be written compactly as

φ′′ + φ′(log L)′ = −1− p

4
F 2Y , (A.20)

η′′ + η′(log L)′ = −F 2e−(1−p)φe−η b̂2 q̂2
2

(Gr)2(4−p)
− q2

2

q2
1

e−η(b̂′)2 , (A.21)

L−1(Le−η b̂′)′ = F 2e−(1−p)φe−η q̂2
1

(Gr)2(4−p)
b̂ . (A.22)

11In form notation this corresponds to F̃(p+2) = (−1)pq̂1e
−(1−p)φ ∗dΩ4−p, so that ∗d∗[e(1−p)φF̃(p+2)] =

−q̂1∗d2Ω ≡ 0 and
∫

S4−p e(1−p)φ ∗F̃(p+2) = −q̂1 Ω4−p.
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Finally, the Einstein equations read (no summation over indices)

Rt
t =

p− 3
8

Y , (A.23)

Ri
i =

p− 3
8

Y , (A.24)

Rr
r = F−2

(
(φ′)2 +

1
4
(η′)2 +

1
2

q2
2

q2
1

e−η(b̂′)2
)

+
p− 3

8
Y , (A.25)

Rα
α =

p + 1
8

Y . (A.26)

Here (for p > 0) i = 1, . . . , p are the spatial world-volume directions while α runs over
the 4− p transverse angular coordinates. The Ricci-tensor components for a metric of the
form (A.10) are

Rt
t =

1
F 2

(
− (log B)′′ − (log B)′(log L)′

)
, (A.27)

Ri
i =

1
F 2

(
− (log C)′′ − (log C)′(log L)′

)
, (A.28)

Rr
r =

1
F 2

(
− (log B)′′ − ((log B)′)2 + (log F )′ (log B)′

+ p
[
− (log C)′′ − ((log C)′)2 + (log F )′ (log C)′

]
+ (4− p)

[
− (log Gr)′′ − ((log Gr)′)2 + (log F )′ (log Gr)′

])
, (A.29)

Rα
α =

1
F 2

(
− (log Gr)′′ − (log Gr)′ (log L)′ + (3− p)

F 2

(Gr)2
)

. (A.30)

A.3 Solving the equations of motion

In order to find the non-extremal versions of the supergravity solutions for fractional D0-
and D2-branes on T 4/Z2 of ref. [6] that reduce to Schwarzschild black-brane metrics for
vanishing charges, the natural ansatz to employ is

ds2 = H
p−3
4

(
− fdt2 +

p∑
i=1

(dxi)2
)

+ H
p+1
4
(
f−1dr2 + r2dΩ2

4−p

)
. (A.31)

This ansatz applies equally well for p = 1, while for the three-brane, as mentioned in
section 2, it is preferable to use the adapted ansatz

ds2 = −fdt2 +
3∑

i=1

(dxi)2 +
(rΛ

r

)2
H
(
f−1dr2 + r2dθ2

)
. (A.32)

From these metrics we can read off expressions for B, C, F and G in terms of the radial
functions H and f , and plug them in the equations of motion listed above. Solving the so
obtained equations is the objective of the present section.
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We start by observing that the harmonic equation (2.10) for f follows from the Einstein
equations (A.23) and (A.24) (for p = 0, eq. (A.24) is not present and other equations need
to be used instead). Equipped with this result, we combine the dilaton equation (A.20)
with the angular Einstein equation (A.26) to get the equation

χ′′ + χ′(log L)′ = 0 , (A.33)

where we have defined χ = log(eφH−(1−p)/4) and where now L = fr4−p. Requiring
that the dilaton behave in a non-singular manner at the horizon we find that χ must
be constant. Asking furthermore that at infinity we recover flat Minkowski space with
vanishing dilaton, we obtain

eφ = H
1−p
4 . (A.34)

For the case p = 1, eq. (A.33) simply gives that the dilaton is constant, as appropriate for
the string in six dimensions.

It remains to solve the scalar-field equations (A.21)–(A.22) together with the radial
Einstein equation (A.25), using also either (A.20) or (A.23). With

F 2Y =
1

Hfr2(4−p)

(
q̂2
1 + q̂2

2e
−η b̂2

)
, (A.35)

the two latter amount to the single equation

e−η b̂2 = γ , (A.36)

where we have introduced

γ ≡ −q2
1

q2
2

− 1
q̂2
2

Hr4−p

(
fr4−p H ′

H

)′
. (A.37)

From (A.21) and (A.22) we, on the other hand, obtain the equation(
Lη′ +

q2
2

q2
1

Le−η b̂ b̂′
)′

= 0 , (A.38)

which can trivially be integrated to(
eη +

1
2

q2
2

q2
1

b̂2

)′
= q3L

−1eη , (A.39)

q3 being a constant of integration. Since L = fr4−p we see that the right-hand side
becomes singular at the horizon unless q3 = 0. Requiring the scalars η and b̂ to be non-
singular at the horizon we are hence led to set q3 to zero. Imposing, furthermore, that
these scalars vanish at infinity we arrive at the relation

eη = 1 +
1
2

q2
2

q2
1

− 1
2

q2
2

q2
1

b̂2 , (A.40)
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which when combined with the dilaton equation written in the form (A.36) finally yields
the expressions

eη =
(

1 +
1
2

q2
2

q2
1

)[
1 +

1
2

q2
2

q2
1

γ

]−1

, (A.41)

b̂ =
√

γ

(
1 +

1
2

q2
2

q2
1

)1/2 [
1 +

1
2

q2
2

q2
1

γ

]−1/2

. (A.42)

At this point, it remains only to determine the function H by solving the equations (A.21)
and (A.25) with the above results as input. To this end, we define the functions h1 and
h2 by

γ =
h2

2

H
,

1 + 1
2

q2
2

q2
1
γ

1 + 1
2

q2
2

q2
1

=
h2

1

H
, (A.43)

so that

H =
(

1 +
1
2

q2
2

q2
1

)
h2

1 −
1
2

q2
2

q2
1

h2
2 , eη =

H

h2
1

, b̂ =
h2

h1
. (A.44)

Using these expressions the gauge field strengths take the form

Gr0...p =
kp q2

r4−p

h1h2

H2
, G̃r0...p =

kp q2

r4−p

h2
1

H2
, F̃r0...p =

kp q1

r4−p

1
H

. (A.45)

Having expressed all fields in terms of h1 and h2, we rewrite also the remaining equations
of motion which determine these functions. Equation (A.25) thus reads(

1 +
1
2

q2
2

q2
1

)
h1

(
h′′

1 +
4− p

r
h′

1

)
=

1
2

q2
2

q2
1

h2

(
h′′

2 +
4− p

r
h′

2

)
, (A.46)

while (A.21) may be written as

0 =
q̂2
1

r2(4−p)
+ Hf

(
log

H

f

)′ (
log

h2

h1

)′

+ Hf

[
1
h1

(
h′′

1 +
4− p

r
h′

1

)
− 1

h2

(
h′′

2 +
4− p

r
h′

2

)]
. (A.47)

Clearly, the simplest non-trivial way to satisfy eq. (A.46) is by taking both h1 and h2 to
be harmonic, like f , and we will do so here. Taking the boundary conditions at infinity
into account we thus have for p = 0, 1, 2

f = 1− r3−p
0

r3−p
, h1 = 1− r3−p

1

r3−p
, h2 = 1− r3−p

2

r3−p
. (A.48)

For p = 3 the three harmonic functions governing the non-extremal solution instead take
the form

f = 1− a0 log
rΛ

r
, h1 = 1− a1 log

rΛ

r
, h2 = 1− a2 log

rΛ

r
, (A.49)
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where rΛ is a large-radius cut-off. In both cases, we are left with two undetermined
parameters—r1,2 and a1,2 respectively—and in both cases these parameters are fixed by
eq. (A.47). However, before analysing this equation, let us derive the solutions for the
gauge potentials C(p+1) and A(p+1).

Starting with the untwisted sector, we get an integral for C0...p from eq. (A.45) by
recalling that Gr0...p = C ′

0...p. For p = 0, 1, 2, this integral can readily be evaluated with
the result

C0...p = − q2

r3−p

h3

H
, h3 ≡ 1

2
(h1 + h2) . (A.50)

To obtain this result we used the fact that h1 and h2 being harmonic implies the identity

h3H +
r

3− p
(h3H

′ − h′
3H) = h1h2 . (A.51)

With C0...p in hand, we similarly obtain A0...p by integrating the equation

A′
0...p = F̃r0...p − b̃′ C0...p = (3− p)

q1

r4−p

1
H

[
1 +

r

3− p

q2
2

q2
1

h3

(
h2

h1

)′]
, (A.52)

The solution is found to be
A0...p = − q1

r3−p

1
h1

. (A.53)

Here we used the identity

H = h2
1 +

r

3− p

q2
2

q2
1

h3(h1h
′
2 − h′

1h2) , (A.54)

which, like (A.51), follows directly from the form of H and h3 in terms of h1 and h2.
For the three-brane the situation is somewhat more subtle since there are no analogues

of the first-order differential equations (A.51) and (A.54). Instead, led by the form of the
harmonic functions, we apply the mapping r−(3−p) 7→ log(rΛ/r) to the potentials in (A.50)
and (A.53) above. It is then straightforward to check that the so obtained expressions
give the correct gauge potentials:

C0123 = −q2 h3

H
log

rΛ

r
, A0123 = − q1

h1
log

rΛ

r
. (A.55)

Let us then, finally, address eq. (A.47), which for harmonic h1 and h2 immediately
simplifies to

(kp q1)2

r2(4−p)
+ Hf

(
log

H

f

)′ (
log

h2

h1

)′
= 0 . (A.56)

By performing the p-dependent substitutions of variables and parameters

σ =




r−(3−p) p = 0, 1, 2

log rΛ
r p = 3

, ρ0,1,2 =




r3−p
0,1,2 p = 0, 1, 2

a0,1,2 p = 3
, (A.57)
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this equation reduces to the single, p-independent, equation

q2
1 + Ĥf̂

(
log

Ĥ

f̂

)′(
log

ĥ2

ĥ1

)′
= 0 , (A.58)

where

f̂ = 1− ρ0 σ , ĥ1,2 = 1− ρ1,2 σ , Ĥ =
(

1 +
1
2

q2
2

q2
1

)
ĥ2

1 −
1
2

q2
2

q2
1

ĥ2
2 , (A.59)

and the prime now denotes differentiation with respect to σ. Note that only the “un-
hatted” charges q1 and q2 enter in eq. (A.58), showing that these are the charges that
appear in the harmonic functions. Inserting the expressions (A.59) we find that the two
undetermined parameters ρ1 and ρ2 are required by (A.58) to satisfy

ρ1 = u , ρ2 =
uρ0

2u− ρ0
, (A.60)

where u is a solution of the quartic equation

4 (2 q2
1 + q2

2)u4 − 8 (2 q2
1 + q2

2) ρ0 u3 + 2 (2 q2
2 ρ2

0 + 5 q2
1 ρ2

0 − 2 q4
1)u2

+ 2 (2 q4
1 ρ0 − q2

1 ρ3
0)u− q4

1 ρ2
0 = 0 . (A.61)

This equation has the four solutions

u =
1
2
ρ0 + ε1

√
2q4

1 + (q2
1 + q2

2)ρ
2
0 − ε22q2

1Λ
2
√

2q2
1 + q2

2

, (A.62)

where ε1 = ±1, ε2 = ±1 and

Λ =

√
q4
1 + (q2

1 + q2
2)ρ

2
0 +

1
4
ρ4
0 . (A.63)

Consequently, the solutions to the equations of motion have four branches given by

ρ1 =
1
2
ρ0 + ε1

√
2q4

1 + (q2
1 + q2

2)ρ
2
0 − ε22q2

1Λ
2
√

2q2
1 + q2

2

, (A.64)

ρ2 =
1
2
ρ0 + ε1

√
2q4

1 + (q2
1 + q2

2)ρ
2
0 + ε22q2

1Λ

2
√

q2
2

, (A.65)

where, again, ε1 = ±1 and ε2 = ±1. There are thus four solutions, which may be sum-
marized by the expressions given in section 2.3, with ρ1,2 as in (A.64), (A.65). By taking
the limit ρ0 → 0 in the these expressions, one can easily see that the branch which cor-
rectly reduces to the extremal fractional-brane solution—i.e. the branch which satisfies
the boundary conditions imposed by the action (2.8)—and which thus represents the non-
extremal fractional brane solution, is the branch with ε1 = +1 and ε2 = +1. This choice
corresponds to (2.17)–(2.18) (p = 0, 1, 2) and (2.28)–(2.29) (p = 3) in the text.
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branch ε1 ε2 restrictions sign(H(r0))

I +1 +1 r1 < r0 < r2 −
II −1 +1 r2 < r1 < r0 −
III +1 −1 r2 < r0 < r1 +
IV −1 −1 r1 < r2 < r0 +

Table 1: Properties of the four branches.

A.4 Some properties of the four branches

To understand the properties of these four branches it is useful to consider the sign of H

at the horizon. (Since, as pointed out in section 2.3, the three-brane case is special, we
restrict the discussion to p < 3.) Thus, setting r = r0 in eq. (A.56) we find that

H(r0) =
q2
1

r7−2p
0

(
h′

2

h2
− h′

1

h1

)−1
∣∣∣∣∣
r=r0

. (A.66)

Using eq. (A.48) we then obtain

sign(H(r0)) = sign(r2 − r1) sign(r0 − r1) sign(r0 − r2) . (A.67)

Hence, H(r0) is positive if either r0 < r1 < r2 or r1 < r2 < r0 or r2 < r0 < r1, while it is
negative if either r1 < r0 < r2 or r0 < r2 < r1 or r2 < r1 < r0.

One can now check that the sign of H(r0) cannot be changed within a particular
branch. From eq. (A.67) we see that this precisely means that r0, r1 and r2 cannot cross
within a particular branch. In table 1 we have listed the restrictions on the ranges for r0,
r1 and r2, along with the sign of H(r0) for the four branches. The solution discussed in
the text corresponds to branch I.

In order to further examine the physics of the four branches obtained above we compute
the ADM mass,

Mp =
Ω4−p

16πG6

[
(4− p)r3−p

0 + (3− p)ξ
]
, 16πG6 =

2κ2

V
(A.68)

where Ω4−p denotes the volume of the unit (4− p)-sphere and

ξ =
1
q2
1

[
−(2q2

1 + q2
2)r

3−p
1 + q2

2r
3−p
2

]
(A.69)

is the coefficient of the leading 1/r3−p term in the function H in eq. (A.44). Focusing
first on the four branches at r0 = 0, it is not difficult to see that branches II and III are
unphysical since they both have negative mass, and hence should be discarded. On the
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other hand, for branches I and IV we find

ξ =




q2 , (I)√
2q2

1 + q2
2 , (IV)

(A.70)

so that branch I at r0 = 0 has the lowest mass. To obtain (A.70) we have used (2.22) for
branch I while for branch IV at r0 = 0 we have h1 = 1+ q2

1/(
√

2q2
1 + q2

2r
3−p), h2 = 1. The

charges are

Q̂1 =
−1

16πG6

∫
S4−p

e(1−p)φ ∗F̃(p+2) = (3− p) q1
Ω4−p

16πG6
, (A.71)

Q̂2 =
−1

16πG6

∫
S4−p

e(1−p)φ eη ∗G̃(p+2) = (3− p) q2
Ω4−p

16πG6
, (A.72)

(recall that 16πG6 = 2κ2/V ). Since the untwisted charge is Q̂2 irrespective of the branch,
we conclude that branch I at extremality is BPS (Mp = Q̂2), while branch IV apparently
describes a system that is non-BPS even in the limit r0 = 0.

Although it is presently not clear what the precise physical meaning, if any, of the su-
pergravity solution of branch IV is, we note that this solution has well-defined black-brane
thermodynamics. Using standard methods of black-hole thermodynamics, we compute
the temperature and entropy:12

T =
3− p

4π
1

r0

√
H(r0)

, S =
Ω4−p

4G6
r4−p
0

√
H(r0) . (A.73)

Using the Wess–Zumino term of the world-volume action (2.8), the corresponding chemical
potentials, dual to the charges in (A.71) and (A.72) are

µ1 = −(A01...p + b̃ C01...p)
∣∣∣
r=r0

, µ2 = −C01...p

∣∣∣
r=r0

. (A.74)

More explicitly, using (A.44), (A.50), (A.53) the chemical potentials read

µ1 =
q1

r3−p
0

1
h1(r0)

+
q2

q1

(
h2(r0)
h1(r0)

− 1
)

q2

r3−p
0

h3(r0)
H(r0)

, µ2 =
q2

r3−p
0

h3(r0)
H(r0)

, (A.75)

in terms of the harmonic functions hi, i = 1, 2, 3 given in eqs (A.48) and (A.50).
As a check, we note that the first law of thermodynamics dM = TdS + µidQ̂i can be

integrated to yield Smarr’s formula

(3− p)M = (4− p)TS + (3− p)(µ1Q̂1 + µ2Q̂2) . (A.76)
12We note that the following expressions are algebraically valid for all branches. However, we have

already excluded branches II and III on the grounds of positivity of the mass, while for branch I it is seen

from table 1 that H(r0) < 0 and hence the expressions below are not physically meaningful. Alternatively,

we have already argued extensively in the text that branch I does not develop into a black brane.
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One may verify explicitly that this law holds since

ξ = µ1q1 + µ2q2 , (A.77)

where ξ is defined in (A.69). To prove (A.77) one uses the non-trivial identity

1

r3−p
0

1
h1(r0)

[
q2
1 + q2

2

h2(r0)h3(r0)
H(r0)

]
= ξ . (A.78)

which holds for all branches. To verify this statement one uses the form of H in (A.44)
along with h3 in terms of h1,2, and subsequently employs the relation (A.60) to eliminate
r2. The identity then reduces exactly to the quartic equation (A.61) satisfied by r1.
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[15] M. Cvetič and D. Youm, “Singular BPS saturated states and enhanced symmetries
of four-dimensional N=4 supersymmetric string vacua.” Phys. Lett. B359 (1995)
87–92, hep-th/9507160.

[16] J. P. Gauntlett, N. Kim, D. Martelli and D. Waldram, “Wrapped fivebranes and N
= 2 super Yang-Mills theory.” Phys. Rev. D64 (2001) 106008, hep-th/0106117.

[17] F. Bigazzi, A. L. Cotrone and A. Zaffaroni, “N = 2 gauge theories from wrapped
five-branes.” Phys. Lett. B519 (2001) 269–276, hep-th/0106160.

[18] P. Di Vecchia, H. Enger, E. Imeroni and E. Lozano-Tellechea, “Gauge theories from
wrapped and fractional branes.” hep-th/0112126.

[19] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and I. Marotta, R. Pesando,
“Fractional D-branes and their gauge duals.” JHEP 02 (2001) 014,
hep-th/0011077.

[20] J. Polchinski, “N = 2 gauge-gravity duals.” Int. J. Mod. Phys. A16 (2001) 707–718,
hep-th/0011193.

[21] M. Grana and J. Polchinski, “Gauge / gravity duals with holomorphic dilaton.”
hep-th/0106014.

[22] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, “N = 2 gauge
theories on systems of fractional D3/D7 branes.” hep-th/0107057.
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