3,306 research outputs found

    Exact dynamics in dual-unitary quantum circuits

    Get PDF
    We consider the class of dual-unitary quantum circuits in 1 + 1 dimensions and introduce a notion of “solvable” matrix product states (MPSs), defined by a specific condition which allows us to tackle their time evolution analytically. We provide a classification of the latter, showing that they include certain MPSs of arbitrary bond dimension, and study analytically different aspects of their dynamics. For these initial states, we show that while any subsystem of size l reaches infinite temperature after a time t ∝ l, irrespective of the presence of conserved quantities, the light cone of two-point correlation functions displays qualitatively different features depending on the ergodicity of the quantum circuit, defined by the behavior of infinite-temperature dynamical correlation functions. Furthermore, we study the entanglement spreading from such solvable initial states, providing a closed formula for the time evolution of the entanglement entropy of a connected block. This generalizes recent results obtained in the context of the self-dual kicked Ising model. By comparison, we also consider a family of nonsolvable initial mixed states depending on one real parameter β, which, as β is varied from zero to infinity, interpolate between the infinite-temperature density matrix and arbitrary initial pure product states. We study analytically their dynamics for small values of β, and highlight the differences from the case of solvable MPSs

    Long range correlations and phase transition in non-equilibrium diffusive systems

    Full text link
    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles.In both cases, the two-point correlation functions allow to detect the occurrence of a phase transition as they become singular when the system approaches the transition

    Vortices in the two-dimensional Simple Exclusion Process

    Full text link
    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partialflux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed.Comment: Revised version to appear in Journal of Statistical Physics. Minor correction

    Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution

    Full text link
    The probability distribution of the current in the asymmetric simple exclusion process is expected to undergo a phase transition in the regime of weak asymmetry of the jumping rates. This transition was first predicted by Bodineau and Derrida using a linear stability analysis of the hydrodynamical limit of the process and further arguments have been given by Mallick and Prolhac. However it has been impossible so far to study what happens after the transition. The present paper presents an analysis of the large deviation function of the current on both sides of the transition from a Bethe ansatz approach of the weak asymmetry regime of the exclusion process.Comment: accepted to J.Stat.Phys, 1 figure, 1 reference, 2 paragraphs adde

    A diffusive system driven by a battery or by a smoothly varying field

    Full text link
    We consider the steady state of a one dimensional diffusive system, such as the symmetric simple exclusion process (SSEP) on a ring, driven by a battery at the origin or by a smoothly varying field along the ring. The battery appears as the limiting case of a smoothly varying field, when the field becomes a delta function at the origin. We find that in the scaling limit, the long range pair correlation functions of the system driven by a battery turn out to be very different from the ones known in the steady state of the SSEP maintained out of equilibrium by contact with two reservoirs, even when the steady state density profiles are identical in both models

    Non equilibrium current fluctuations in stochastic lattice gases

    Full text link
    We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation principle for a space-time fluctuation jj of the empirical current with a rate functional \mc I (j). We then estimate the probability of a fluctuation of the average current over a large time interval; this probability can be obtained by solving a variational problem for the functional \mc I . We discuss several possible scenarios, interpreted as dynamical phase transitions, for this variational problem. They actually occur in specific models. We finally discuss the time reversal properties of \mc I and derive a fluctuation relationship akin to the Gallavotti-Cohen theorem for the entropy production.Comment: 36 Pages, No figur

    Crossover to the KPZ equation

    Get PDF
    We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry an2γan^{2-\gamma} (a,γ>0a,\gamma>0) and it occurs at γ=1/2\gamma=1/2. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if γ(1/2,1]\gamma\in(1/2,1], while for γ=1/2\gamma=1/2 it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.Comment: Published by Annales Henri Poincare Volume 13, Number 4 (2012), 813-82

    A nonequilibrium extension of the Clausius heat theorem

    Full text link
    We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende

    Dynamics and Lax-Phillips scattering for generalized Lamb models

    Full text link
    This paper treats the dynamics and scattering of a model of coupled oscillating systems, a finite dimensional one and a wave field on the half line. The coupling is realized producing the family of selfadjoint extensions of the suitably restricted self-adjoint operator describing the uncoupled dynamics. The spectral theory of the family is studied and the associated quadratic forms constructed. The dynamics turns out to be Hamiltonian and the Hamiltonian is described, including the case in which the finite dimensional systems comprises nonlinear oscillators; in this case the dynamics is shown to exist as well. In the linear case the system is equivalent, on a dense subspace, to a wave equation on the half line with higher order boundary conditions, described by a differential polynomial p(x)p(\partial_x) explicitely related to the model parameters. In terms of such structure the Lax-Phillips scattering of the system is studied. In particular we determine the incoming and outgoing translation representations, the scattering operator, which turns out to be unitarily equivalent to the multiplication operator given by the rational function p(iκ)/p(iκ)-p(i\kappa)^*/p(i\kappa), and the Lax-Phillips semigroup, which describes the evolution of the states which are neither incoming in the past nor outgoing in the future

    Current reservoirs in the simple exclusion process

    Full text link
    We consider the symmetric simple exclusion process in the interval [N,N][-N,N] with additional birth and death processes respectively on (NK,N](N-K,N], K>0K>0, and [N,N+K)[-N,-N+K). The exclusion is speeded up by a factor N2N^2, births and deaths by a factor NN. Assuming propagation of chaos (a property proved in a companion paper "Truncated correlations in the stirring process with births and deaths") we prove convergence in the limit NN\to \infty to the linear heat equation with Dirichlet condition on the boundaries; the boundary conditions however are not known a priori, they are obtained by solving a non linear equation. The model simulates mass transport with current reservoirs at the boundaries and the Fourier law is proved to hold
    corecore