2,052 research outputs found

    Estimating spinning binary parameters and testing alternative theories of gravity with LISA

    Full text link
    We investigate the effect of spin-orbit and spin-spin couplings on the estimation of parameters for inspiralling compact binaries of massive black holes, and for neutron stars inspiralling into intermediate-mass black holes, using hypothetical data from the proposed Laser Interferometer Space Antenna (LISA). We work both in Einstein's theory and in alternative theories of gravity of the scalar-tensor and massive-graviton types. We restrict the analysis to non-precessing spinning binaries, i.e. to cases where the spins are aligned normal to the orbital plane. We find that the accuracy with which intrinsic binary parameters such as chirp mass and reduced mass can be estimated within general relativity is degraded by between one and two orders of magnitude. We find that the bound on the coupling parameter omega_BD of scalar-tensor gravity is significantly reduced by the presence of spin couplings, while the reduction in the graviton-mass bound is milder. Using fast Monte-Carlo simulations of 10^4 binaries, we show that inclusion of spin terms in massive black-hole binaries has little effect on the angular resolution or on distance determination accuracy. For stellar mass inspirals into intermediate-mass black holes, the angular resolution and the distance are determined only poorly, in all cases considered. We also show that, if LISA's low-frequency noise sensitivity can be extrapolated from 10^-4 Hz to as low as 10^-5 Hz, the accuracy of determining both extrinsic parameters (distance, sky location) and intrinsic parameters (chirp mass, reduced mass) of massive binaries may be greatly improved.Comment: 29 pages, 9 figures. Matches version accepted in Physical Review D. More stringent checks in the inversion of the Fisher matri

    Final spins from the merger of precessing binary black holes

    Get PDF
    The inspiral of binary black holes is governed by gravitational radiation reaction at binary separations r < 1000 M, yet it is too computationally expensive to begin numerical-relativity simulations with initial separations r > 10 M. Fortunately, binary evolution between these separations is well described by post-Newtonian equations of motion. We examine how this post-Newtonian evolution affects the distribution of spin orientations at separations r ~ 10 M where numerical-relativity simulations typically begin. Although isotropic spin distributions at r ~ 1000 M remain isotropic at r ~ 10 M, distributions that are initially partially aligned with the orbital angular momentum can be significantly distorted during the post-Newtonian inspiral. Spin precession tends to align (anti-align) the binary black hole spins with each other if the spin of the more massive black hole is initially partially aligned (anti-aligned) with the orbital angular momentum, thus increasing (decreasing) the average final spin. Spin precession is stronger for comparable-mass binaries, and could produce significant spin alignment before merger for both supermassive and stellar-mass black hole binaries. We also point out that precession induces an intrinsic accuracy limitation (< 0.03 in the dimensionless spin magnitude, < 20 degrees in the direction) in predicting the final spin resulting from the merger of widely separated binaries.Comment: 20 pages, 16 figures, new PN terms, submitted to PR

    Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations

    Get PDF
    Gravitational waves from the merger of two neutron stars cannot be easily distinguished from those produced by a comparable-mass mixed binary in which one of the companions is a black hole. Low-mass black holes are interesting because they could form in the aftermath of the coalescence of two neutron stars, from the collapse of massive stars, from matter overdensities in the primordial Universe, or as the outcome of the interaction between neutron stars and dark matter. Gravitational waves carry the imprint of the internal composition of neutron stars via the so-called tidal deformability parameter, which depends on the stellar equation of state and is equal to zero for black holes. We present a new data analysis strategy powered by Bayesian inference and machine learning to identify mixed binaries, hence low-mass black holes, using the distribution of the tidal deformability parameter inferred from gravitational-wave observations.Comment: 13 pages, 6 figures - v2: matches the published version in Phys. Rev. D 102, 02302

    Explaining LIGO's observations via isolated binary evolution with natal kicks

    Get PDF
    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ200\sigma\simeq 200 (50) km/s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ\sigma is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ\sigma used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR

    Comment on `Hawking radiation from fluctuating black holes'

    Full text link
    Takahashi & Soda (2010 Class. Quantum Grav. v27 p175008, arXiv:1005.0286) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice of gauge, the dominant (even divergent) contribution to the coefficient of the spectrum correction that they identify is a pure gauge artifact. I summarize the logic of their calculation, comment on the divergences encountered in its course and comment on how they could be eliminated, and thus the calculation be completed.Comment: 12 pages, 1 fig; feynmp, amsref

    Multiband gravitational-wave event rates and stellar physics

    Get PDF
    Joint gravitational-wave detections of stellar-mass black-hole binaries by ground- and space-based observatories will provide unprecedented opportunities for fundamental physics and astronomy. We present a semianalytic method to estimate multiband event rates by combining selection effects of ground-based interferometers (like LIGO/Virgo) and space missions (like LISA). We forecast the expected number of multiband detections first by using information from current LIGO/Virgo data, and then through population synthesis simulations of binary stars. We estimate that few to tens of LISA detections can be used to predict mergers detectable on the ground. Conversely, hundreds of events could potentially be extracted from the LISA data stream using prior information from ground detections. In general, the merger signal of binaries observable by LISA is strong enough to be unambiguously identified by both current and future ground-based detectors. Therefore third-generation detectors will not increase the number of multiband detections compared to LIGO/Virgo. We use population synthesis simulations of isolated binary stars to explore some of the stellar physics that could be constrained with multiband events, and we show that specific formation pathways might be overrepresented in multiband events compared to ground-only detections.Comment: 17 pages, 11 figures. Database and python code available at https://github.com/dgerosa/spops - Published in PR

    Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations

    Full text link
    We compute numerically the quasinormal modes of Kerr-Newman black holes in the scalar case, for which the perturbation equations are separable. Then we study different approximations to decouple electromagnetic and gravitational perturbations of the Kerr-Newman metric, computing the corresponding quasinormal modes. Our results suggest that the Teukolsky-like equation derived by Dudley and Finley gives a good approximation to the dynamics of a rotating charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman based models of elementary particles, the Dudley-Finley equation should be adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys. Rev.

    Superkicks in ultrarelativistic encounters of spinning black holes

    Get PDF
    We study ultrarelativistic encounters of two spinning, equal-mass black holes through simulations in full numerical relativity. Two initial data sequences are studied in detail: one that leads to scattering and one that leads to a grazing collision and merger. In all cases, the initial black hole spins lie in the orbital plane, a configuration that leads to the so-called "superkicks". In astrophysical, quasicircular inspirals, such kicks can be as large as ~3,000 km/s; here, we find configurations that exceed ~15,000 km/s. We find that the maximum recoil is to a good approximation proportional to the total amount of energy radiated in gravitational waves, but largely independent of whether a merger occurs or not. This shows that the mechanism predominantly responsible for the superkick is not related to merger dynamics. Rather, a consistent explanation is that the "bobbing" motion of the orbit causes an asymmetric beaming of the radiation produced by the in-plane orbital motion of the binary, and the net asymmetry is balanced by a recoil. We use our results to formulate some conjectures on the ultimate kick achievable in any black hole encounter.Comment: 10 pages, 6 figures, 2 table

    Matched-filtering and parameter estimation of ringdown waveforms

    Get PDF
    Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.Comment: 19 pages, 9 figures, matches version in press in PR
    corecore