We compare binary evolution models with different assumptions about
black-hole natal kicks to the first gravitational-wave observations performed
by the LIGO detectors. Our comparisons attempt to reconcile merger rate,
masses, spins, and spin-orbit misalignments of all current observations with
state-of-the-art formation scenarios of binary black holes formed in isolation.
We estimate that black holes (BHs) should receive natal kicks at birth of the
order of σ≃200 (50) km/s if tidal processes do (not) realign
stellar spins. Our estimate is driven by two simple factors. The natal kick
dispersion σ is bounded from above because large kicks disrupt too many
binaries (reducing the merger rate below the observed value). Conversely, the
natal kick distribution is bounded from below because modest kicks are needed
to produce a range of spin-orbit misalignments. A distribution of misalignments
increases our models' compatibility with LIGO's observations, if all BHs are
likely to have natal spins. Unlike related work which adopts a concrete BH
natal spin prescription, we explore a range of possible BH natal spin
distributions. Within the context of our models, for all of the choices of
σ used here and within the context of one simple fiducial parameterized
spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR