15 research outputs found

    MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo

    Get PDF
    Thyroid hormone (TH) is recognized for its role in cellular metabolism and growth and participates in homeostasis of the heart. T3 activates pro-survival pathways including Akt and mTOR. Treatment with T3 after myocardial infarction is cardioprotective and promotes elements of physiological hypertrophic response after cardiac injury. Although T3 is known to benefit the heart, very little about its regulation at the molecular level has been described to date. The ubiquitin proteasome system (UPS) regulates nuclear hormone receptors such as estrogen, progesterone, androgen, and glucocorticoid receptors by both degradatory and non-degradatory mechanisms. However, how the UPS regulates T3-mediated activity is not well understood. In this study, we aim to determine the role of the muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) in regulating T3-induced cardiomyocyte growth. An increase in MuRF1 expression inhibits T3-induced physiological cardiac hypertrophy, whereas a decrease in MuRF1 expression enhances T3’s activity both in vitro and in cardiomyocytes in vivo. MuRF1 interacts directly with TRα to inhibit its activity by posttranslational ubiquitination in a non-canonical manner. We then demonstrated that a nuclear localization apparatus that regulates/inhibits nuclear receptors by sequestering them within a subcompartment of the nucleus was necessary for MuRF1 to inhibit T3 activity. This work implicates a novel mechanism that enhances the beneficial T3 activity specifically within the heart, thereby offering a potential target to enhance cardiac T3 activity in an organ-specific manner

    Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability

    Get PDF
    The replication stress response, which serves as an anticancer barrier, is activated not only by DNA damage and replication obstacles but also oncogenes, thus obscuring how cancer evolves. Here, we identify that oncogene expression, similar to other replication stress-inducing agents, induces single-stranded DNA (ssDNA) gaps that reduce cell fitness. DNA fiber analysis and electron microscopy reveal that activation of translesion synthesis (TLS) polymerases restricts replication fork slowing, reversal, and fork degradation without inducing replication gaps despite the continuation of replication during stress. Consistent with gap suppression (GS) being fundamental to cancer, we demonstrate that a small-molecule inhibitor targeting the TLS factor REV1 not only disrupts DNA replication and cancer cell fitness but also synergizes with gap-inducing therapies such as inhibitors of ATR or Wee1. Our work illuminates that GS during replication is critical for cancer cell fitness and therefore a targetable vulnerability

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema

    Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    Get PDF
    Increased generation of reactive oxygen species (ROS) is implicated in "glucose toxicity" in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.http://www.sciencedirect.com/science/article/B6WXH-4PC8RDJ-3/1/56d34862ca326b7c56cae828eb44677

    Dietary Fructose Enhances the Ability of Low Concentrations of Angiotensin II to Stimulate Proximal Tubule Na+ Reabsorption

    Get PDF
    Fructose-enriched diets cause salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the water and salt filtered through the glomerulus. Angiotensin II (Ang II) regulates this process. Normally, dietary salt reduces Ang II allowing the kidney to excrete more salt, thereby preventing hypertension. We hypothesized that fructose-enriched diets enhance the ability of low concentrations of Ang II to stimulate PT transport. We measured the effects of a low concentration of Ang II (10−12 mol/L) on transport-related oxygen consumption (QO2), and Na/K-ATPase and Na/H-exchange (NHE) activities and expression in PTs from rats consuming tap water (Control) or 20% fructose (FRUC). In FRUC-treated PTs, Ang II increased QO2 by 14.9 ± 1.3 nmol/mg/min (p < 0.01) but had no effect in Controls. FRUC elevated NHE3 expression by 19 ± 3% (p < 0.004) but not Na/K-ATPase expression. Ang II stimulated NHE activity in FRUC PT (Δ + 0.7 ± 0.1 Arbitrary Fluorescent units (AFU)/s, p < 0.01) but not in Controls. Na/K-ATPase activity was not affected. The PKC inhibitor Gö6976 blocked the ability of FRUC to augment the actions of Ang II. FRUC did not alter the inhibitory effect of dopamine on NHE activity. We conclude that dietary fructose increases the ability of low concentrations of Ang II to stimulate PT Na reabsorption via effects on NHE

    Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets

    Get PDF
    Dietary fructose causes salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the filtered NaCl. Angiotensin II (Ang II), atrial natriuretic peptide (ANP) and norepinephrine (NE) regulate this process. Although Ang II signaling blockade ameliorates fructose-induced salt-sensitive hypertension, basal PT Na+ reabsorption and its sensitivity to the aforementioned factors have not been studied in this model. We hypothesized consuming fructose with a high-salt diet selectively enhances the sensitivity of PT transport to Ang II. We investigated the effects of Ang II, ANP and NE on PT Na reabsorption in rats fed a high-salt diet drinking tap water (HS) or 20% fructose (HS-FRU). Oxygen consumption (QO2) was used as a measure of all ATP-dependent transport processes. Na+/K+-ATPase and Na+/H+-exchange (NHE) activities were studied because they represent primary apical and basolateral transporters in this segment. The effect of 10−12 mol/L Ang II in QO2 by PTs from HS-FRU was larger than HS (p < 0.02; n = 7). In PTs from HS-FRU 10−12 mol/L Ang II stimulated NHE activity by 2.6 ± 0.7 arbitrary fluorescence units/s (p < 0.01; n = 5) but not in those from HS. The stimulatory effect of Ang II on PT Na+/K+-ATPase activity was not affected by HS-FRU. Responses of QO2 and NHE activity to ANP did not differ between groups. The response of QO2 to NE was unaltered by HS-FRU. We concluded that the sensitivity of PT Na+ reabsorption specifically to Ang II is enhanced by HS-FRU. This maintains high rates of transport even in the presence of low concentrations of the peptide, and likely contributes to the hypertension
    corecore