145 research outputs found

    Long distance manipulation of a levitated nanoparticle in high vacuum

    Get PDF
    Accurate delivery of small targets in high vacuum is a pivotal task in many branches of science and technology. Beyond the different strategies developed for atoms, proteins, macroscopic clusters and pellets, the manipulation of neutral particles over macroscopic distances still poses a formidable challenge. Here we report a novel approach based on a mobile optical trap operated under feedback control that enables long range 3D manipulation of a silica nanoparticle in high vacuum. We apply this technique to load a single nanoparticle into a high-finesse optical cavity through a load-lock vacuum system. We foresee our scheme to benefit the field of optomechanics with levitating nano-objects as well as ultrasensitive detection and monitoring.Comment: 12 pages 5 figure

    Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design

    No full text
    International audienceIntramolecular excimer emission arising from organic molecules as a blue light source in fluorescent Small Molecule Organic Light Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted DiSpiroFluorene-IndenoFluorenes (DSF-IFs 1-3) possessing different fluorescent properties due to their different main emitters have been investigated through a structure-property relationship study. Due to its particular geometry, the rigid DSF-IF platform 2 allows an 'aryl/fluorene/aryl' dimer to be preformed in the ground state leading, in the excited state, to a deep blue fluorescent emission through strong π-π intramolecular interactions between the two 'aryl/fluorene/aryl' arms. 2 has been successfully used as an emitting layer in a SMOLED with electroluminescence arising from electrogenerated intramolecular excimers and the properties of these excimer-based OLEDs have been compared to those of two model compounds (1 and 3). The simple and non-optimized double-layer device displays a deep blue colour (CIE coordinates: 0.19; 0.18) exhibiting a luminance of 510 Cd m−2 with a luminous efficiency of ca. 0.1 Cd A−1. This work is, to the best of our knowledge, the first rational and comparative study describing an intramolecular excimer based-SMOLED

    Toulouse Hyperspectral Data Set: a benchmark data set to assess semi-supervised spectral representation learning and pixel-wise classification techniques

    Full text link
    Airborne hyperspectral images can be used to map the land cover in large urban areas, thanks to their very high spatial and spectral resolutions on a wide spectral domain. While the spectral dimension of hyperspectral images is highly informative of the chemical composition of the land surface, the use of state-of-the-art machine learning algorithms to map the land cover has been dramatically limited by the availability of training data. To cope with the scarcity of annotations, semi-supervised and self-supervised techniques have lately raised a lot of interest in the community. Yet, the publicly available hyperspectral data sets commonly used to benchmark machine learning models are not totally suited to evaluate their generalization performances due to one or several of the following properties: a limited geographical coverage (which does not reflect the spectral diversity in metropolitan areas), a small number of land cover classes and a lack of appropriate standard train / test splits for semi-supervised and self-supervised learning. Therefore, we release in this paper the Toulouse Hyperspectral Data Set that stands out from other data sets in the above-mentioned respects in order to meet key issues in spectral representation learning and classification over large-scale hyperspectral images with very few labeled pixels. Besides, we discuss and experiment the self-supervised task of Masked Autoencoders and establish a baseline for pixel-wise classification based on a conventional autoencoder combined with a Random Forest classifier achieving 82% overall accuracy and 74% F1 score. The Toulouse Hyperspectral Data Set and our code are publicly available at https://www.toulouse-hyperspectral-data-set.com and https://www.github.com/Romain3Ch216/tlse-experiments, respectively.Comment: 17 pages, 13 figure

    p3^3VAE: a physics-integrated generative model. Application to the semantic segmentation of optical remote sensing images

    Full text link
    The combination of machine learning models with physical models is a recent research path to learn robust data representations. In this paper, we introduce p3^3VAE, a generative model that integrates a perfect physical model which partially explains the true underlying factors of variation in the data. To fully leverage our hybrid design, we propose a semi-supervised optimization procedure and an inference scheme that comes along meaningful uncertainty estimates. We apply p3^3VAE to the semantic segmentation of high-resolution hyperspectral remote sensing images. Our experiments on a simulated data set demonstrated the benefits of our hybrid model against conventional machine learning models in terms of extrapolation capabilities and interpretability. In particular, we show that p3^3VAE naturally has high disentanglement capabilities. Our code and data have been made publicly available at https://github.com/Romain3Ch216/p3VAE.Comment: 21 pages, 11 figures, submitted to the International Journal of Computer Visio

    Snapshot on Negative Electrode Materials for Potassium-Ion Batteries

    Get PDF
    Potassium-based batteries have recently emerged as a promising alternative to lithium-ion batteries. The very low potential of the K+/K redox couple together with the high mobility of K+ in electrolytes resulting from its weak Lewis acidity should provide high energy density systems operating with fast kinetics. However, potassium metal cannot be implemented in commercial batteries due to its high reactivity. As safety is one of the major concerns when developing new types of batteries, it is therefore crucial to look for materials alternative to potassium metal that electrochemically insert K+ at low potential. Here, the different types of negative electrode materials highlighted in many recent reports will be presented in detail. As a cornerstone of viable potassium-ion batteries, the choice of the electrolyte will be addressed as it directly impacts the cycling performance. Lastly, guidelines to a rational design of sustainable and efficient negative electrode materials will be proposed as open perspectives

    Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs

    Get PDF
    International audienceFour high triplet org. semi-conductors based on the donor-spiro-acceptor design (D-spiro-A) have been synthesized. Their physicochem. and photophys. properties have been studied, compared and discussed in light of the nature of their resp. donor/acceptor units. The four compds. have been used as host materials in efficient sky-blue (EQE \textgreater 10% at 10 mA cm-2) phosphorescent org. light emitting diodes

    Electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type Organic Field Effect Transistors

    Get PDF
    International audienceA bridged pentaphenylene derivative functionalized with dicyanovinylene units LPP([double bond, length as m-dash]C(CN)2)2 has been designed, synthesized and characterized. The optical and electrochemical properties have been carefully studied through a combined experimental and theoretical approach and compared with those of two pentaphenylene derivatives bearing methylenes (LPP) or carbonyl (LPP([double bond, length as m-dash]O)2) on the bridgeheads. LPP([double bond, length as m-dash]C(CN)2)2 which possesses a very low LUMO level, ca. −4.02 eV, has been successfully used as an active layer in n-channel OFETs using the epoxy based photoresist SU-8 as a gate insulator. LPP([double bond, length as m-dash]C(CN)2)2 based n-channel OFETs show low voltage functioning (low gate-source and drain-source voltages), high ratio between the on and the off currents (2 × 105), interesting subthreshold swing (S = 1) and excellent stability under electrical stress and in a nitrogen atmosphere. More importantly, we have also shown that LPP([double bond, length as m-dash]C(CN)2)2 based n-channel OFETs present an excellent environmental stability. This work is to the best of our knowledge the first report on bridged pentaphenylene-based semiconductors in n-type OFETs and highlights the potential of such type of material to provide air stable OFETs
    • …
    corecore