28 research outputs found

    Comparison of Holmium:YAG and Thulium Fiber Lasers on the Risk of Laser Fiber Fracture

    Get PDF
    Objectives: To compare the risk of laser fiber fracture between Ho:YAG laser and Thulium Fiber Laser (TFL) with different laser fiber diameters, laser settings, and fiber bending radii. METHODS: Lengths of 200, 272, and 365 mu m single use fibers were used with a 30 W Ho:YAG laser and a 50 W Super Pulsed TFL. Laser fibers of 150 mu m length were also tested with the TFL only. Five different increasingly smaller bend radii were tested: 1, 0.9, 0.75, 0.6, and 0.45 cm. A total of 13 different laser settings were tested for the Ho:YAG laser: six fragmentation settings with a short pulse duration, and seven dusting settings with a long pulse duration. A total of 33 different laser settings were tested for the TFL. Three laser settings were common two both lasers: 0.5 J x 12 Hz, 0.8 J x 8 Hz, 2 J x 3 Hz. The laser was activated for 5 min or until fiber fracture. Each measurement was performed ten times. Results: While fiber failures occurred with all fiber diameters with Ho:YAG laser, none were reported with TFL. Identified risk factors of fiber fracture with the Ho:YAG laser were short pulse and high energy for the 365 mu m fibers (p = 0.041), but not for the 200 and 272 mu m fibers (p = 1 and p = 0.43, respectively). High frequency was not a risk factor of fiber fracture. Fiber diameter also seemed to be a risk factor of fracture. The 200 mu m fibers broke more frequently than the 272 and 365 mu m ones (p = 0.039). There was a trend for a higher number of fractures with the 365 mu m fibers compared to the 272 mu m ones, these occurring at a larger bend radius, but this difference was not significant. Conclusion: TFL appears to be a safer laser regarding the risk of fiber fracture than Ho:YAG when used with fibers in a deflected position

    Energetic metabolism and anticancer treatments : study of Δ2-troglitazone and 2-deoxyglucose effects on breast cancer cells

    No full text
    L’absence de rĂ©ponse et la rĂ©sistance des cellules cancĂ©reuses mammaires aux thĂ©rapies actuelles justifient de dĂ©velopper de nouveaux traitements. Une stratĂ©gie prometteuse consiste Ă  cibler le mĂ©tabolisme Ă©nergĂ©tique des cellules cancĂ©reuses. Dans ce contexte, des thiazolidinediones (TZD) prĂ©sentent des effets antiprolifĂ©ratifs qui pourraient rĂ©sulter d’une atteinte du mĂ©tabolisme Ă©nergĂ©tique. Notre laboratoire Ă©tudie des TZD dĂ©rivĂ©es de la troglitazone (TGZ). Durant cette thĂšse, nous avons cherchĂ© Ă  dĂ©terminer si la Δ2-Troglitazone (Δ2-TGZ) modifie le mĂ©tabolisme Ă©nergĂ©tique des cellules cancĂ©reuses mammaires. Jusqu’à prĂ©sent, les expĂ©riences menĂ©es au laboratoire Ă©taient rĂ©alisĂ©es dans un milieu de culture contenant 1% de sĂ©rum de veau fƓtal (SVF) qui crĂ©e un stress peu propice Ă  l’étude du mĂ©tabolisme. Nous avons donc d’abord caractĂ©risĂ© les effets de la Δ2-TGZ dans un milieu de culture contenant 10% SVF. Dans ces conditions, la Δ2-TGZ diminue toujours la prolifĂ©ration des cellules cancĂ©reuses mammaires, mais les doses requises sont plus Ă©levĂ©es. En outre, la Δ2-TGZ induit des effets cytostatiques plutĂŽt que l’apoptose. Nous avons ensuite montrĂ© que la Δ2-TGZ induit une perturbation du mĂ©tabolisme Ă©nergĂ©tique, consistant en un blocage de la respiration mitochondriale que les cellules semblent compenser en stimulant la glycolyse. En parallĂšle, nous avons caractĂ©risĂ© le mode d’action du 2-dĂ©soxyglucose dont l’action antiprolifĂ©rative dans les cellules cancĂ©reuses mammaires est due Ă  l’inhibition de la glycolyse et Ă  la perturbation de la N-glycosylation des protĂ©ines. Il reste Ă  dĂ©terminer la part des altĂ©rations mĂ©taboliques dans l’action anti-cancĂ©reuse de la Δ2-TGZThe absence of response and the resistance of cancer cells to therapies are strong arguments for the development of new therapeutic strategies. Data from the literature suggest that it could be interesting to target energy metabolism of cancer cells. In this context, thiazolidinediones (TZDs) display antiproliferative effects that could be the result of energy metabolism alteration. During this PhD, we aimed at determining if Δ2-Troglitazone (Δ2-TGZ) could modify energy metabolism of breast cancer cells. The experiments performed previously used a culture medium containing 1% of fetal calf serum (FCS) that is rather a stress inducing condition that can disturb cell metabolism. Thus, we first characterized the effects of Δ2-TGZ in a 10% FCS containing medium. In this case, Δ2-TGZ still decreases cell proliferation of breast cancer cells, but it requires high doses. Besides, Δ2-TGZ induces cell cycle arrest instead of apoptosis. Then, we have shown that Δ2-TGZ induced modifications of energy metabolism, which are due to a decrease in oxidative phosphorylation. We also observed an increase in glycolytic activity that is probably a compensatory mechanism. During this part of our work, we have also characterized the mechanisms involved in the anticancer activity of 2-deoxyglucose. We have shown that in breast cancer cells, this compound acts not only by glycolysis inhibition but also by protein N-glycosylation alteration. We have now to determine the part of metabolic alterations that are involved in the anti-cancer effects of Δ2-TG

    MĂ©tabolisme Ă©nergĂ©tique et traitements anticancĂ©reux : caractĂ©risation des effets de la Δ2-troglitazone et du 2-dĂ©soxyglucose sur les cellules d’adĂ©nocarcinomes mammaires

    No full text
    The absence of response and the resistance of cancer cells to therapies are strong arguments for the development of new therapeutic strategies. Data from the literature suggest that it could be interesting to target energy metabolism of cancer cells. In this context, thiazolidinediones (TZDs) display antiproliferative effects that could be the result of energy metabolism alteration. During this PhD, we aimed at determining if Δ2-Troglitazone (Δ2-TGZ) could modify energy metabolism of breast cancer cells. The experiments performed previously used a culture medium containing 1% of fetal calf serum (FCS) that is rather a stress inducing condition that can disturb cell metabolism. Thus, we first characterized the effects of Δ2-TGZ in a 10% FCS containing medium. In this case, Δ2-TGZ still decreases cell proliferation of breast cancer cells, but it requires high doses. Besides, Δ2-TGZ induces cell cycle arrest instead of apoptosis. Then, we have shown that Δ2-TGZ induced modifications of energy metabolism, which are due to a decrease in oxidative phosphorylation. We also observed an increase in glycolytic activity that is probably a compensatory mechanism. During this part of our work, we have also characterized the mechanisms involved in the anticancer activity of 2-deoxyglucose. We have shown that in breast cancer cells, this compound acts not only by glycolysis inhibition but also by protein N-glycosylation alteration. We have now to determine the part of metabolic alterations that are involved in the anti-cancer effects of Δ2-TGZL’absence de rĂ©ponse et la rĂ©sistance des cellules cancĂ©reuses mammaires aux thĂ©rapies actuelles justifient de dĂ©velopper de nouveaux traitements. Une stratĂ©gie prometteuse consiste Ă  cibler le mĂ©tabolisme Ă©nergĂ©tique des cellules cancĂ©reuses. Dans ce contexte, des thiazolidinediones (TZD) prĂ©sentent des effets antiprolifĂ©ratifs qui pourraient rĂ©sulter d’une atteinte du mĂ©tabolisme Ă©nergĂ©tique. Notre laboratoire Ă©tudie des TZD dĂ©rivĂ©es de la troglitazone (TGZ). Durant cette thĂšse, nous avons cherchĂ© Ă  dĂ©terminer si la Δ2-Troglitazone (Δ2-TGZ) modifie le mĂ©tabolisme Ă©nergĂ©tique des cellules cancĂ©reuses mammaires. Jusqu’à prĂ©sent, les expĂ©riences menĂ©es au laboratoire Ă©taient rĂ©alisĂ©es dans un milieu de culture contenant 1% de sĂ©rum de veau fƓtal (SVF) qui crĂ©e un stress peu propice Ă  l’étude du mĂ©tabolisme. Nous avons donc d’abord caractĂ©risĂ© les effets de la Δ2-TGZ dans un milieu de culture contenant 10% SVF. Dans ces conditions, la Δ2-TGZ diminue toujours la prolifĂ©ration des cellules cancĂ©reuses mammaires, mais les doses requises sont plus Ă©levĂ©es. En outre, la Δ2-TGZ induit des effets cytostatiques plutĂŽt que l’apoptose. Nous avons ensuite montrĂ© que la Δ2-TGZ induit une perturbation du mĂ©tabolisme Ă©nergĂ©tique, consistant en un blocage de la respiration mitochondriale que les cellules semblent compenser en stimulant la glycolyse. En parallĂšle, nous avons caractĂ©risĂ© le mode d’action du 2-dĂ©soxyglucose dont l’action antiprolifĂ©rative dans les cellules cancĂ©reuses mammaires est due Ă  l’inhibition de la glycolyse et Ă  la perturbation de la N-glycosylation des protĂ©ines. Il reste Ă  dĂ©terminer la part des altĂ©rations mĂ©taboliques dans l’action anti-cancĂ©reuse de la Δ2-TG

    ∆2-Troglitazone and 2-Deoxyglucose inhibit breast cancer cell proliferation: a consequence of the alteration of the cancer cell metabolism?

    No full text
    PrĂ©sentation PosterNational audienceBackground: Resistance to conventional therapies and the absence of targeted therapy for triple negative mammary tumors are strong arguments for the search for new therapeutic agents. In cancer cells, the dependency on glycolysis for energy generation provides a biochemical basis to preferentially kill the malignant cells by inhibiting glycolysis. Thiazolidinediones display antiproliferative effects in vitro and in vivo which could be the result of mechanisms targeting cell metabolism. Our objective is to characterize the modifications of breast cancer cell metabolism after ∆2-Troglitazone (∆2T) exposure and to compare it with the effects of 2-deoxyglucose (2-DG), a well known inhibitor of glucose metabolism.Methods: The triple-negative breast cancer cell line MDA-MB231 cells were exposed to D2T and 2-DG. Cell numbers were assessed by crystal violet staining assay. Cell proliferation was determined by BrDU incorporation assay. Gene expression was analysed by RT-PCR. Protein expression was analyzed by immunoblotting and immunolocalisation.Results: 48h cell treatment with increasing concentrations of D2T (0-100”M) and 2-DG (0-10mM) inhibited cell proliferation in a dose-dependent manner. Nevertheless, cell viability was not as much affected suggesting that D2T and 2-DG mainly slowed down cell cycle. Concomitantly, both compounds induced endoplasmic reticulum stress. In contrast to 2-DG, the effect of D2T was not reversed by addition of an excess of glucose. At the metabolic level, NAD+/NADH ratio was increased after a 24h treatment with D2T or 2-DG. Under the same conditions, the mRNA levels of two key glycolysis enzymes, hexokinase and phosphofructokinase, were reduced.Conclusion: Our studies show that ∆2T and 2-DG induce changes in triple-negative breast cancer cell metabolism. The importance of the metabolic deregulation in the antitumoral effect of ∆2T has now to be demonstrated

    Delta-2-Troglitazone targets mitochondria in triple-negative breast cancer cells: a metabolic change contributing to sensitization of cancer cells to chemotherapy?

    No full text
    Présentation PosterNational audienceBackground: Resistance to conventional therapies for triple-negative mammary tumors are strong arguments for the search for new therapeutic agents. A strategy is to develop drugs targeting energetic metabolism to sensitize cancer cells to chemotherapy. Thiazolidinediones display antiproliferative effects which could be the result of mechanisms altering cell metabolism. Our objectives are to characterize the modifications of the triple-negative breast cancer cell line MDA-MB231 metabolism after Delta-2-Troglitazone (D2T) exposure and to define whether D2T could potentiate the action of chemotherapeutic agents.Methods: Cell numbers were assessed by crystal violet staining. NAD+ and NADH concentrations were determined by chemiluminescence. Lactate and glucose concentrations were measured with an YSI 2950 Biochemistry Analyzer. Mitochondrial activity was assessed by oxygraphy. Results: 48h cell treatment with D2T (75 ”M) inhibited cell proliferation. At the metabolic level, NAD+/NADH ratio was increased after a 24h treatment, suggesting that glycolysis and/or mitochondrial respiration could be altered. Oxygen consumption was diminished after a 24h exposure to D2T, associated with a decreased mitochondrial efficiency and a mitochondrial decoupling. At the glycolytic level, lactate production and glucose consumption were increased in D2T-treated cells. Finally, D2T at a lower dose (15 ”M) potentiated the effects of 2-DG (2-Deoxyglucose, a glycolytic inhibitor) and doxorubicin on cell viability. Conclusion: D2T induces metabolic changes in cancer cells MDA-MB231. D2T targets mitochondrial activity likely leading to the stimulation of glycolysis. Besides, a low dose of D2T potentiates the action of 2-DG and doxorubicin on cell viability. The impact of the D2T/doxorubicin combination on proliferation and apoptosis has to be characterized. Overall, the link between the metabolic alteration observed with D2T and its antiproliferative effect has to be demonstrated

    Le « drug reprofiling » appliqué à la troglitazone : vers un nouveau traitement anticancéreux ?

    No full text
    National audienceMalgrĂ© les sommes toujours plus colossales investies dans la recherche et le dĂ©veloppement par les entreprises pharmaceutiques, peu de nouvelles entitĂ©s molĂ©culaires sont effectivement mises sur le marchĂ©. Il est ainsi nĂ©cessaire de dĂ©velopper des approches originales pour la dĂ©couverte de nouvelles molĂ©cules actives. Parmi celles-ci, le «drug reprofiling» est une dĂ©marche intĂ©ressante. Elle consiste Ă  identifier et Ă  dĂ©velopper de nouveaux usages pour des mĂ©dicaments existants. Par exemple, les molĂ©cules de la famille des glitazones qui sont utilisĂ©es pour le traitement du diabĂšte ont montrĂ© une activitĂ© antiprolifĂ©rative. L’effet anticancĂ©reux a Ă©tĂ© confirmĂ© par des mĂ©ta-analyses dans des cohortes de patients diabĂ©tiques traitĂ©s par ces composĂ©s, mais aussi en bithĂ©rapie avec des inhibiteurs de tyrosine kinase. En suivant cette dĂ©marche, nous avons dĂ©veloppĂ© des analogues de la troglitazone qui avait montrĂ© une activitĂ© antiprolifĂ©rative sur diverses lignĂ©es de cellules cancĂ©reuses. Nous avons optimisĂ© sa structure de façon Ă  1) augmenter son activitĂ© antiprolifĂ©rative et 2) diminuer sa toxicitĂ© envers les cellules non cancĂ©reuses et 3) augmenter sa stabilitĂ© mĂ©tabolique. En effet, les molĂ©cules obtenues ont montrĂ© une activitĂ© de l’ordre du micromolaire sur diverses lignĂ©es cellulaires cancĂ©reuses alors que des hĂ©patocytes non cancĂ©reux y sont complĂštement insensibles. CorrĂ©lativement, la demi-vie (tÂœ) du composĂ© leader est nettement supĂ©rieure Ă  celle du composĂ© parent aprĂšs administration par voie iv Ă  des souris

    Protein N-glycosylation alteration and glycolysis inhibition both contribute to the antiproliferative action of 2-deoxyglucose in breast cancer cells

    No full text
    International audiencePurpose : Cancer cells often elicit a higher glycolytic rate than normal cells, supporting the development of glycolysis inhibitors as therapeutic agents. 2-Deoxyglucose (2-DG) is used in this context due to its ability to compete with glucose. However, many studies do not take into account that 2-DG inhibits not only glycolysis but also N-glycosylation. Since there are limited publications on 2-DG mechanism of action in breast cancer, we studied its effects in breast cancer cell lines to determine the part played by glycolysis inhibition and N-linked glycosylation interference.Methods and Results : 2-Deoxyglucose behaved as an anticancer agent with a similar efficiency on cell number decrease between the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cells. It also interfered with the N-linked glycosylation process in both cell lines as illustrated by the migration profile of the lysosomal-associated membrane protein 2 and calumenin. These results are reinforced by the appearance of an abnormal Man7GlcNAc2 structure both on lipid-linked oligosaccharides and N-linked glycoproteins of 2-DG incubated MDA-MB-231 cells. Besides, 2-DG-induced a transient endoplasmic reticulum stress that was more sustained in MDA-MB-231 cells. Both changes were abrogated by mannose. 2-DG, even in the presence of mannose, decreased glycolysis in both cell lines. Mannose partially reversed the effects of 2-DG on cell numbers with N-linked glycosylation interference accounting for 37 and 47% of 2-DG anti-cancerous effects in MDA-MB-231 and MCF-7 cells, respectively.Conclusion : N-linked glycosylation interference and glycolysis disruption both contribute to the anticancer properties of 2-DG in breast cancer cells

    Le repositionnement de la TGZ, une stratégie intéressante pour le traitement des tumeurs mammaires triple-négatives?

    No full text
    National audienceLe cancer du sein est un problĂšme majeur de santĂ© publique. En France, il reprĂ©sente la premiĂšre cause de dĂ©cĂšs par cancer chez la femme. L'existence de tumeurs mammaires qui ne rĂ©pondent pas aux traitements ou qui acquiĂšrent une rĂ©sistance, justifie le dĂ©veloppement de nouveaux composĂ©s Ă  action anticancĂ©reuse. Une stratĂ©gie en pleine expansion est de "repositionner" d’anciennes molĂ©cules dĂ©jĂ  utilisĂ©es cliniquement pour de nouveaux usages thĂ©rapeutiques. Notre Ă©quipe travaille depuis plusieurs annĂ©es sur le repositionnement de la troglitazone (TGZ), un agoniste synthĂ©tique du rĂ©cepteur PPARgamma initialement utilisĂ© comme antidiabĂ©tique mais qui prĂ©sentait aussi des effets anticancĂ©reux dĂ©crits dĂšs les annĂ©es 90. Cet antidiabĂ©tique a dĂ» ĂȘtre retirĂ© du marchĂ© en raison de son hĂ©pato-toxicitĂ©. En tenant compte du mĂ©canisme d’action de la TGZ, de sa mĂ©tabolisation et des effets secondaires sur les hĂ©patocytes, nous avons dĂ©veloppĂ© et brevetĂ© de nouveaux composĂ©s. Ces dĂ©rivĂ©s insaturĂ©s n’activent plus PPARgamma, ils ont une activitĂ© anticancĂ©reuse accrue et sont moins toxiques pour les hĂ©patocytes humains. Nos recherches actuelles sont dĂ©diĂ©es Ă  la comprĂ©hension du mĂ©canisme d’action de ces dĂ©rivĂ©s. Nous nous focalisons sur l’atteinte du mĂ©tabolisme Ă©nergĂ©tique d’une part et la rĂ©expression de la claudine 1, protĂ©ine des jonctions cellulaires, d’autre part. Des Ă©tudes in vivo sont en cours. L'utilisation de ces composĂ©s seuls ou en association avec d'autres agents anticancĂ©reux pourrait constituer une piste thĂ©rapeutique novatrice pour les tumeurs triple-nĂ©gatives, en particulier les tumeurs « claudin 1 low » qui sont de mauvais pronostic
    corecore