1,212 research outputs found

    Probabilistic state preparation of a single molecular ion by projection measurement

    Full text link
    We show how to prepare a single molecular ion in a specific internal quantum state in a situation where the molecule is trapped and sympathetically cooled by an atomic ion and where its internal degrees of freedom are initially in thermal equilibrium with the surroundings. The scheme is based on conditional creation of correlation between the internal state of the molecule and the translational state of the collective motion of the two ions, followed by a projection measurement of this collective mode by atomic ion shelving techniques. State preparation in a large number of internal states is possible.Comment: 4 pages, 2 figures, 2 table

    Distinct nature of static and dynamic magnetic stripes in cuprate superconductors

    Get PDF
    We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La2_2CuO4+y_{4+y}. We find that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. We conclude that the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, but rather that the signals originate from different domains in the sample. These domains may be related by structural twinning, or may be entirely different phases, where the static stripes in one phase are pinned versions of the dynamic stripes in the other. Our results explain earlier observations of unusual dispersions in underdoped La2−x_{2-x}Srx_xCuO4_{4} (x=0.07x=0.07) and La2−x_{2-x}Bax_xCuO4_{4} (x=0.095x=0.095). Our findings are relevant for all compounds exhibiting magnetic stripes, and may thus be a vital part in unveiling the nature of high temperature superconductivity

    Models and metaphors: complexity theory and through-life management in the built environment

    Get PDF
    Complexity thinking may have both modelling and metaphorical applications in the through-life management of the built environment. These two distinct approaches are examined and compared. In the first instance, some of the sources of complexity in the design, construction and maintenance of the built environment are identified. The metaphorical use of complexity in management thinking and its application in the built environment are briefly examined. This is followed by an exploration of modelling techniques relevant to built environment concerns. Non-linear and complex mathematical techniques such as fuzzy logic, cellular automata and attractors, may be applicable to their analysis. Existing software tools are identified and examples of successful built environment applications of complexity modelling are given. Some issues that arise include the definition of phenomena in a mathematically usable way, the functionality of available software and the possibility of going beyond representational modelling. Further questions arising from the application of complexity thinking are discussed, including the possibilities for confusion that arise from the use of metaphor. The metaphor of a 'commentary machine' is suggested as a possible way forward and it is suggested that an appropriate linguistic analysis can in certain situations reduce perceived complexity

    Imaging Neurodegenerative Metabolism in Amyotrophic Lateral Sclerosis with Hyperpolarized [1-13C]pyruvate MRI

    Get PDF
    The cause of amyotrophic lateral sclerosis (ALS) is still unknown, and consequently, early diagnosis of the disease can be difficult and effective treatment is lacking. The pathology of ALS seems to involve specific disturbances in carbohydrate metabolism, which may be diagnostic and therapeutic targets. Magnetic resonance imaging (MRI) with hyperpolarized [1-(13)C]pyruvate is emerging as a technology for the evaluation of pathway-specific changes in the brain’s metabolism. By imaging pyruvate and the lactate and bicarbonate it is metabolized into, the technology is sensitive to the metabolic changes of inflammation and mitochondrial dysfunction. In this study, we performed hyperpolarized MRI of a patient with newly diagnosed ALS. We found a lateralized difference in [1-(13)C]pyruvate-to-[1-(13)C]lactate exchange with no changes in exchange from [1-(13)C]pyruvate to (13)C-bicarbonate. The 40% increase in [1-(13)C]pyruvate-to-[1-(13)C]lactate exchange corresponded with the patient’s symptoms and presentation with upper-motor neuron affection and cortical hyperexcitability. The data presented here demonstrate the feasibility of performing hyperpolarized MRI in ALS. They indicate potential in pathway-specific imaging of dysfunctional carbohydrate metabolism in ALS, an enigmatic neurodegenerative disease

    Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    Get PDF
    BACKGROUND: Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function. METHODS: Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) colonic epithelial cells. Protein expression was measured by western blotting and intracellular Ca(2+) levels by Fura-2 fluorescence. KEY RESULTS: While acute (15 min) treatment of T(84) cells with a cholinergic G(q) PCR agonist, carbachol (CCh), rapidly stimulated Cl(-) secretion, subsequent CCh-induced responses were attenuated in a biphasic manner. The first phase was transient and resolved within 6 h but this was followed by a chronic phase of attenuated responsiveness that was sustained up to 48 h. CCh-pretreatment did not chronically alter responses to another G(q)PCR agonist, histamine, or to thapsigargin or forskolin which elevate intracellular Ca(2+) and cAMP, respectively. This chronically acting antisecretory mechanism is not shared by neurotransmitters that activate G(s)PCRs. Conditioned medium from CCh-pretreated cells mimicked its chronic antisecretory actions, suggesting involvement of an epithelial-derived soluble factor but further experimentation ruled out the involvement of epidermal growth factor receptor ligands. Acute CCh exposure did not chronically alter surface expression of muscarinic M(3) receptors but inhibited intracellular Ca(2+) mobilization upon subsequent agonist challenge. CONCLUSIONS \u26 INFERENCES: These data reveal a novel, chronically acting, antisecretory mechanism that downregulates epithelial secretory capacity upon repeated G(q)PCR agonist exposure. This mechanism involves release of a soluble factor that uncouples receptor activation from downstream prosecretory signals
    • …
    corecore