102 research outputs found

    Hypoxia mimetics restore bone biomineralisation in hyperglycaemic environments

    Get PDF
    Diabetic patients have an increased risk of fracture and an increased occurrence of impaired fracture healing. Diabetic and hyperglycaemic conditions have been shown to impair the cellular response to hypoxia, via an inhibited hypoxia inducible factor (HIF)-1α pathway. We investigated, using an in vitro hyperglycaemia bone tissue engineering model (and a multidisciplinary bone characterisation approach), the differing effects of glucose levels, hypoxia and chemicals known to stabilise HIF-1α (CoCl2 and DMOG) on bone formation. Hypoxia (1% O2) inhibited bone nodule formation and resulted in discrete biomineralisation as opposed to the mineralised extracellular collagen fibres found in normoxia (20% O2). Unlike hypoxia, the use of hypoxia mimetics did not prevent nodule formation in normal glucose level. Hyperglycaemic conditions (25 mM and 50 mM glucose) inhibited biomineralisation. Interestingly, both hypoxia mimetics (CoCl2 and DMOG) partly restored hyperglycaemia inhibited bone nodule formation. These results highlight the difference in osteoblast responses between hypoxia mimetics and actual hypoxia and suggests a role of HIF-1α stabilisation in bone biomineralisation that extends that of promoting neovascularisation, or other system effects associated with hypoxia and bone regeneration in vivo. This study demonstrates that targeting the HIF pathway may represent a promising strategy for bone regeneration in diabetic patients

    The Time-Dependent Role of Bisphosphonates on Atherosclerotic Plaque Calcification

    Get PDF
    Atherosclerotic plaque calcification directly contributes to the leading cause of morbidity and mortality by affecting plaque vulnerability and rupture risk. Small microcalcifications can increase plaque stress and promote rupture, whereas large calcifications can stabilize plaques. Drugs that target bone mineralization may lead to unintended consequences on ectopic plaque calcification and cardiovascular outcomes. Bisphosphonates, common anti-osteoporotic agents, have elicited unexpected cardiovascular events in clinical trials. Here, we investigated the role of bisphosphonate treatment and timing on the disruption or promotion of vascular calcification and bone minerals in a mouse model of atherosclerosis. We started the bisphosphonate treatment either before plaque formation, at early plaque formation times associated with the onset of calcification, or at late stages of plaque development. Our data indicated that long-term bisphosphonate treatment (beginning prior to plaque development) leads to higher levels of plaque calcification, with a narrower mineral size distribution. When given later in plaque development, we measured a wider distribution of mineral size. These morphological alterations might be associated with a higher risk of plaque rupture by creating stress foci. Yet, bone mineral density positively correlated with the duration of the bisphosphonate treatment

    Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation

    Get PDF
    Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X‐ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle‐based systems

    Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration

    Get PDF
    Drusen are lipid-, mineral-, and protein-containing extracellular deposits that accumulate between the basal lamina of the retinal pigment epithelium (RPE) and Bruch’s membrane (BrM) of the human eye. They are a defining feature of age-related macular degeneration (AMD), a common sight-threatening disease of older adults. The appearance of heterogeneous internal reflectivity within drusen (HIRD) on optical coherence tomography (OCT) images has been suggested to indicate an increased risk of progression to advanced AMD. Here, in a cohort of patients with AMD and drusen, we show that HIRD indicated an increased risk of developing advanced AMD within 1 year. Using multimodal imaging in an independent cohort, we demonstrate that progression to AMD was associated with increasing degeneration of the RPE overlying HIRD. Morphological analysis of clinically imaged cadaveric human eye samples revealed that HIRD was formed by multilobular nodules. Nanoanalytical methods showed that nodules were composed of hydroxyapatite and that they differed from spherules and BrM plaques, other refractile features also found in the retinas of patients with AMD. These findings suggest that hydroxyapatite nodules may be indicators of progression to advanced AMD and that using multimodal clinical imaging to determine the composition of macular calcifications may help to direct therapeutic strategies and outcome measures in AMD

    Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    Get PDF
    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched’ in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil

    Protein disorder-order interplay to guide the growth of hierarchical mineralized structures

    Get PDF
    A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder–order interplay using elastin-like recombinamers to program organic–inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    • 

    corecore