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One Sentence Summary: Hydroxyapatite containing large nodules in the sub-RPE-basal 

laminar space are progression markers to end-stage age-related macular degeneration. 

 

ABSTRACT 

Soft drusen are a defining feature of age-related macular degeneration (AMD), a prevalent 

sight-threatening disease of older adults. In some eyes with AMD, optical coherence 

tomography shows heterogeneous internal reflectivity within soft drusen (HIRD). HIRD is 

associated with hypoautofluorescence of overlying retinal pigment epithelium (RPE) and a 4-fold 

increased risk of incident geographic atrophy at 1 year. We hypothesized that histologically 

imaged phosphate-rich multilobular refractile nodules (20-100 µm) might account for HIRD. 

Nano-analytical material science imaging techniques confirmed that calcium and phosphate 

form hydroxyapatite in nodules, as well as in spherules and Bruch’s membrane plaques. 

However, nodules uniquely lack magnesium and represent polycrystalline hydroxyapatite, 

whereas spherules diffract as single crystal whitlockite, and plaques are amorphously 

crystalline. Nodules are high-risk biomarkers for rapid AMD progression and has a great 

potential to be used in clinical trials. The agonal state of the RPE overlying nodules impacts on 

the extracellular mineralization and this could be critical for developing new therapeutic 

approaches.  

mailto:i.lengyel@ucl.ac.uk


Calcification in age-related macular degeneration  

3 
 

Introduction:  

Globally, age-related macular degeneration (AMD) is a prevalent cause of legal blindness in the 

elderly. The neovascular form of advanced AMD is treatable, however, no effective treatment for 

the other form of advanced AMD, geographic atrophy (GA), is known. Clear ocular optics and 

sophisticated cellular-level clinical imaging techniques allow detailed study of disease 

microarchitecture in vivo. Biomarkers are indispensable for designing efficient clinical trials and 

for highlighting biological processes that may be targets to both prevent progression and treat 

advanced forms of AMD. Imaging methodologies based on high-speed optical coherence 

tomography (OCT) are being used to define biomarkers that may predict an increased risk of 

progression in eyes with intermediate AMD. These include extracellular drusen, subretinal 

drusenoid deposits, and intraretinal hyperreflective foci that represent migrating retinal pigment 

epithelium (RPE)1. Another previously identified biomarker, 1,2 heterogeneous internal reflectivity 

within drusen (HIRD), does not yet have a histologic and molecular correlate.  

Drusen, which occur early in AMD, are lipid-, 3-7mineral-8,9  and protein-10-13 containing 

extracellular deposits that accumulate between the basal lamina of the RPE and Bruch’s 

membrane (BrM), i.e., in the sub-RPE-BL space. RPE cells support overlying photoreceptors 

and underlying choroidal vasculature, of which BrM, a layered extracellular matrix, is the 

innermost component. Three OCT reflectivity signatures in the sub-RPE-BL space and in BrM 

appear in eyes with GA: 1) small hyperreflective dots within drusen, 14 2) HIRD, 2,15 and 3) 

hyperreflective lines near BrM. 16,17 Of these, HIRD are associated with increased risk for 

progression to advanced AMD (new atrophy at 6 months, odds ratio, 5.1; at last follow-up, odds 

ratio 7.02). The precise tissue sources of these signals require definition. 

Calcification (mineral deposition) capable of generating OCT reflectivity has been identified in 

AMD-affected tissues by various techniques, including light microscopy for refractility, 
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histochemical stains for phosphate and hydroxyapatite (HAP), and elemental and diffraction 

analysis for mineral components. Drusen contain 0.5-5.0 µm diameter spherules that are 

refractile, positive for von Kossa and HAP specific stains, 18,19 and produce a HAP-specific 

diffraction pattern when interrogated by synchrotron µ-X-ray diffraction. 8,9 BrM plaques contain 

calcium by elemental analysis,19,20, but whether plaques generate reflectivity in vivo is unknown. 

One candidate OCT signature for plaques has been excluded in our ongoing clinicopathologic 

correlation studies, as highly hyperreflective lines near (and not in) BrM have been directly 

linked to cholesterol crystals. 21 A third structure comprises nodules, 20-100 µm in diameter, 

consisting of multiple lobes 1-20 µm in diameter, all refractile 14 and von-Kossa positive for 

phosphates.22 Neither the mineral content nor an imaging signature is known for nodules. Based 

on spherules and BrM plaques, we expect that nodules also contain calcium phosphate. 

 

Materials science techniques have successfully elucidated the composition and formation of 

early bone development, ectopic calcification in cardiovascular disease,23,24 and HAP spherules 

in retinal drusen, which are almost certainly the hyperreflective dots seen in OCT.14 We 

reasoned that this approach could also reveal composition and suggest formative processes of 

HIRD and plaques. Using a combination of clinical, histopathologic, and molecular imaging 

techniques, we determined that the HIRD progression biomarker is a nodule, i.e., a crystalline 

calcium phosphate mineral molecularly distinct from both spherules and plaques. A novel multi-

modal imaging staging system for GA progression with associated evolving calcified drusen is 

proposed. 
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RESULTS 

1: Multi-modal imaging appearance of potentially calcified structures  

OCT signatures were contextualized through multimodal imaging. HIRD were identified on OCT 

within RPE elevations, occasionally associated with hyperreflective interior substructures 

(Figure 1: red arrow), non-refractile appearance on color fundus photography (CFP), 

isoautofluorescent in an area of confluent hypoautofluorescence on fundus autofluorescence 

(FAF) and non-reflective on near-infrared reflectance imaging (NIR). A thickened hyperreflective 

cap (pink arrowhead) that is non-refractile on CFP appears mildly hypoautofluorescent with a 

hyperautofluorescent ring on FAF, and is mildly hyperreflective on NIR. Hyperreflective dots 

within HIRD (green circle) are visible as glistening dots on CFP, which are occasionally hidden 

by the hyperreflective cap (pink arrow head). They are undetectable on FAF, and are 

hyperreflective on NIR. Hyperreflective lines that can be indistinguishable from BrM (blue 

arrowhead) are glistening on CFP, hypoautofluorescent on FAF, and highly reflective on NIR. 

Together HIRD and the overlying reflective caps were independently described in OCT as 

hyperreflective pyramidal structures 15and C(onical)-type drusen 25 

Next, we report on four lines of investigation: 1) the association of HIRD with progression to 

advanced AMD; 2) in vivo and ex vivo OCT imaging-histology correlation of HIRD cores and 

caps; 3) composition of nodules, spherules, and BrM plaques based on high-resolution images, 

elemental analysis, and mineral phase identification; 4) natural history and confirmation of 

HIRD-associated RPE demise and AMD progression via multimodal longitudinal clinical 

imaging.  

2: HIRD is associated with progression to advanced AMD 

We began by determining the prognostic value of HIRD for advanced AMD. A total of 138 eyes 

of 131 patients (mean age 80.2 years ± 7.8; range, 63-96 years, 55 males and 76 females) with 
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intermediate AMD and sequential OCT data over 12 months from a tertiary care retinal practice 

in Los Angeles were analyzed for the presence of HIRD on dense volume OCT scans. Among 

these 138 eyes, 62 (45%) had evidence of at least one HIRD as seen on OCT. Fifty-five (40%) 

progressed to advanced AMD (defined as neovascular AMD or GA) within the next 12 months, 

including 33 which progressed to GA only, 14 which progressed to CNV only, and 8 which 

progressed to both atrophy and CNV. HIRD were significantly and independently associated 

with progression to advanced AMD at 12 months with an odds ratio of 4.22 (CI: 1.82 – 9.78; p = 

0.001), highlighting the prognostic importance of HIRD for both end stages of advanced AMD.  

3: Imaging-histology correlation of HIRD 

We correlated OCT with histology in an eye recovered from a deceased donor 4 months after 

the last clinic visit (Figure 2AB, Case 1) and an eye from a clinically undocumented donor 

imaged with ex vivo OCT (Figure 2EF, Case 2). In Case 1, HIRD corresponded to a multilobular 

nodule amidst typical soft druse contents, overlaid by RPE and thick basal laminar deposit 

(BLamD, thickened RPE basement membrane) (Figure 2CD). In Case 2, HIRD corresponded to 

a central nodule surrounded by proteinaceous material, covered by thin BLamD, absent RPE 

(Figure 2G) and atrophied photoreceptors (Figure 2H). To derive a plausible pathogenic 

sequence for HIRD, we examined images from an online resource for AMD histopathology 

(http://projectmacula) (Figure 3). We found that large nodules and isolated RPE cells appeared 

within the original lipidic contents of soft drusen, surrounded by a fibrous background (Figure 

3A, B). Contents of individual drusen were replaced by nodules, (Figure 3C-G) as RPE 

coverage gradually decreased (Figure 3C, D), and BLamD persisted after RPE loss (Figure 

3E-G). Drusen in Figure 3C-G have both nodules and spherules. Nodules tended to localize 

near the druse base but did not lie directly on BrM. However, within BrM, refractile plaques 

could be detected (Figures 2G, 3A-G). Thus, these studies established nodules as the basis of 

the HIRD signature. 

http://projectmacula.cis.uab.edu/
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4: The analysis of the composition of nodules, spherules, and BrM plaques  

To investigate nodule composition a materials science approach was applied. This utilized 

scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), HAP 

specific fluorescent staining, secondary ion mass spectrometry (SIMS), synchrotron x-ray 

fluorescence and transmission electron microscopy-selected area electron diffraction (TEM-

SAED).  

One published AMD case 26 (Supplementary Figure 1) with a serous RPE detachment and 

RPE atrophy (Supplementary Figure 1) exhibited cloud-like pearly drusen and conventional 

soft drusen (Supplementary Figure 1ABC). A second published AMD case 27 possessed 

refractile nodules within micro-dissected macular soft drusen that were also amenable to 

analysis. 

Nodules, spherules and plaques were first examined using SEM. Nodules (Figure 4A, 

Supplementary Figure 2) and spherules (Figure 4B) were readily visible on scanning electron 

micrographs due to their distinct morphology; however, plaques were not (Figure 4CD). 

Plaques were identifiable only by backscattered scanning electron microscopy, which showed 

dense material within BrM, likely mineralization (Supplementary figure 3).  

Lesions identified in these and other eyes were subsequently examined with EDX spectroscopy. 

Discrete peaks corresponding to P KL3, Ca KL3 and Ca KM2 were clearly identifiable on 

spectra obtained from spherules (Figure 4L), plaques (Figure 4M), and importantly for the first 

time, from nodules (Figure 4K). This suggests all 3 lesions are composed of an inorganic 

calcium phosphate. Peaks corresponding to carbon (C), oxygen (O), and sodium (Na) 

emanating from the mineralized lesions as well as from the surrounding organic soft tissues 

were also present (Figure 4KLM).  A small discrete peak for magnesium (Mg) was also present 

on spectra from spherules and plaques; however, this peak was absent for nodules. To confirm 
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Ca and P as major components, we mapped the Ca KL3 and P KL3 peaks. Ca and P were 

enriched within nodules, spherules, and plaques, compared to the surrounding tissues (Figure 

4EH, Nodule; Figure 4FI, Spherule; Figure 4GJ, BrM plaque). 

Macular tissue with nodules, previously interrogated by ex vivo color imaging (Supplementary 

Figure 1), was also investigated with micro-focus synchrotron x-ray fluorescence to confirm the 

presence of Ca (Supplementary Figure 4C).  

Isolated nodules etched of resin and sectioned to 2 µm thickness were also characterized using 

time of flight-secondary ion mass spectrometry (TOF-SIMS). Typical ionic signatures including 

39.9, 55.9, 102.9, 158.9, 174.9 and 230.8 m/z corresponding to [Ca+], [CaO+], [CaPO2
+], 

[Ca2PO3
+], [Ca2PO4

+], and [Ca3PO5
+], respectively, were detected. It was previously reported 

that these signatures indicate inorganic HAP 28, suggesting nodules also contain this calcium 

phosphate compound. Molecular mapping of [Ca+], [CaPO2
+], and the sum of all detected CaP 

signatures confirmed the presence of calcium phosphate within nodules (Supplementary 

figure 5). 

Calcific lesions stained with apatite-specific OsteoSense 680EX (Perkin Elmer, USA) were 

imaged using confocal fluorescence microscopy. Nodules were heterogeneously stained, with 

crusts staining intensely (Figure 4N, arrowhead). As previously reported, 8,9 some spherules 

appeared to have a hollow core (Figure 4O). Plaques readily stained with Osteosense (Figure 

4P). These results suggest that nodules, spherules and plaques were all composed of apatite.  

The detection of secondary ions associated with HAP by TOF-SIMS as well as positive 

OsteoSense staining suggested HAP could be the major constituent of nodules. To explore the 

phases of calcium phosphate present in nodules, spherules and plaques, we employed 

transmission electron microscopy - selected area electron diffraction (SAED) on samples 

sectioned by a focused ion beam (FIB). 
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Each deposit was first characterized by TEM (Figure 5A-I). As observed by light microscopy, 

nodules had numerous lobes, ~1-20 µm in diameter (Figure 5ADG), each with a distinct 

electron-dense outer crust and a less electron-dense inner core (Figure 5ADG). Like nodules, 

spherules were also electron-dense with an inner core and a distinct outer shell (Figure 5BE). 

In contrast to lobular or round deposition in nodules and spherules, respectively, calcium 

phosphate deposition in BrM plaques appear as disordered and crosshatched crystal needles 

(Figure 5CF).  

Subsequently, the calcium phosphate phases forming nodules, spherules and BrM plaques 

were determined using SAED (Figure 5GHI). Diffraction patterns obtained from nodules 

indicated a polycrystalline material composed of numerous unorganized crystals (Figure 5G). 

Diffraction rings including (002), (300), (211) and (006) confirmed that nodules were composed 

of HAP (Supplementary table 2). Spherules diffracted as a single crystal producing a spot 

pattern correlating to (010) zone axes of Whitlockite (Figure 5H). In contrast, BrM plaques 

produced diffuse rings indicating the presence of an amorphous material of very low crystallinity 

(Figure 5I). A diffuse ring encompassing multiple diffraction rings characteristic of apatite was 

detected (Figure 5I). 

 

5: Multimodal imaging characterization and staging of HIRD  

We then staged individual HIRD by longitudinal multimodal clinical imaging. We followed 97 

HIRD in 21 eyes (per eye, mean 4.6, range 1-15) of 17 patients in a tertiary referral retinal clinic 

in New York City (6 men, 11 women, age at baseline 75.9 ± 10.4 years, range 58-94) for a 

mean of 6.17 years (range 3.2-7.5 years; mean number of consecutive OCT scans per eye, 

22.9, range 10-62; total of 1198 B-scans). During this period, the number of lesions visible on 

CFP, NIR, and FAF all increased (Supplementary Figure 6 & 7).  
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We proposed a novel 4-stage pathway for druse progression to HIRD (Figure 6). Variation A 

has less, and Variation B has more, overlying BLamD, and similar trends were seen in both 

(Supplementary Figures 6, 7; Supplementary Table 1).  

Stage 1: druse under intact RPE and a thin layer of BLamD. Druse contents are homogenously 

and moderately hyperreflective, without evidence of a hyporeflective core. HAP spherules 9 are 

undetectable due to shadowing by the RPE, 14 the continuity of which is confirmed by FAF.  

Stage 2A: a hyporeflective core representing a nodule under intact RPE and surrounded by 

hyperreflective dots. Within overlying retina, hyperreflective foci (migrating RPE) 29 are visible.  

Stage 3A: focal loss of RPE, visible on OCT as disruption and thinning of the hyperreflective 

RPE-basal lamina band, gradually exposing the druse interior, which is reduced in volume. RPE 

loss is indicated by central hypoautofluorescence within a hyperautofluorescent border.  

Stage 4A: complete loss of RPE overlying the nodule-filled druse, signified by absent FAF 

signal and a thin hyperreflective border of persistent BLamD.  

Relative to variation A, variation B exhibited less refractility on CFP, more 

hyperautofluorescence, and less hyper-reflectivity on NIR (Supplementary Figure 7). Most 

HIRD lesions were observed at Stages 2 and 3 (Supplementary Figures 6,7).  
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DISCUSSION 

Already a powerful tool to diagnose retinal disease, monitor progression, and provide 

end-points for clinical trials,30 multimodal OCT-based clinical imaging can help define molecular 

pathogenesis if linked to the composition of visualized structures. Herein we replicate and 

extend a 2013 finding that HIRD associate with progression to advanced AMD, by applying the 

same imaging criteria to an independent cohort from the original practice. Further, we use 

histology, multi-modal clinical imaging, and high resolution molecular imaging to show that 

HIRDs are sprawling polycrystalline HAP nodules, distinctly different from the restricted sized 

spherules in drusen (Supplementary Table 1). Figure 6 proposes that in the presence of high 

overall extracellular calcium concentration, higher extracellular magnesium concentration and 

an acidic pH might promote spherule formation while a lower magnesium concentration and 

neutral pH might promote nodule formation, as elaborated below. We further propose that the 

sub-RPE-BL space transforms to a nodule-promoting environment by release of Mg+2 as RPE 

cells die or migrate anteriorly atop drusen, 31 making HIRD indicators of RPE in its agonal state. 

This interpretation is supported by focal HIRD-associated hypoautofluorescence (Figure 6). 

Thus, progression risk is conferred not so much by HIRD themselves but by what they signify 

about RPE health.  

Refractile drusen, appearing on ophthalmoscopy and CFP as glistening with reflective 

dots, were called “calcified” based on appearance and early studies using the von Kossa stain 

for phosphates. 26,32-34 These highly reflective features are associated with HIRD on OCT and 

higher rates of incidence of progression to advanced AMD in previous studies from our LA 

group, either alone or together with 3 other biomarkers.1,2 OCT-reflective drusen substructures 

including type C(onical) resembling stage 4 HIRD (Figure 6) were associated with rapid 

progression to GA but not to neovascular AMD in a large cohort of patients with intermediate 

AMD, perhaps because only 14 individuals had this phenotype.25 Our study expands this 
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literature by showing in the largest patient sample to date that the hyporeflective cores of drusen 

confer risk for advancement to both end-stages, and demonstrating that they are HAP nodules. 

By appearance and composition, nodules are not simply aggregations of recently described 

HAP spherules. 9 Unlike spherules, which are small, refractile on CFP, and reflective on OCT, 

nodules are large, refractile on CFP, and non-reflective on OCT, a difference possibly due to the 

nodules’ rough surface and size. Nodules are hyporeflective like other calcified structures (50 

µm – 1 mm) in the posterior eye. 35,36 We recommend that HIRD be called ‘calcific nodules’ 

going forward instead of an alternative term ‘hyperreflective pyramidal structures.’15 Our 

proposed term describes both the composition and structure of the hyporeflective core, which is 

now a proven biomarker of AMD progression. Further, HIRD can now be differentiated from 

lines with an Intense, mirror-like hyperreflectivity in or near BrM that also strongly associated 

with atrophy 16,17,37-39 and have been independently shown in our ongoing research to correlate 

to single or sparse cholesterol crystals. These crystals signify replacement of oily drusen with 

fluid or fibrotic contents that are sufficiently hydrated to support supersaturation and 

precipitation within the sub-RPE-basal laminar space. 21,40  

 We observed distinct variations in calcium phosphate phases within specific deposits. 

Using x-ray diffraction, we previously reported HAP-enriched spherules in drusen 9 and in 

deposits formed by RPE cells in culture. 22 Combining TEM, EDX and SAED, we identified 

highly crystalline whitlockite spherules, polycrystalline HAP nodules, and poorly crystalline 

apatite plaques. Whitlockite, a magnesium-substituted calcium phosphate previously associated 

with several diseases 41-43 is herein reported for the first time in human eyes. Preferential 

whitlockite formation over HAP has been linked to acidic pH and increased magnesium (Mg) to 

calcium (Ca) ratio,44,45 among other mechanisms. In the kidney, the frequency of apatite and 

whitlockite phases is unaffected by systemic Mg cation (Mg+2) levels, 42 suggesting that local 

Mg+2 concentration determines which calcium phosphate phase forms. Therefore, appropriate 
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Mg+2 in the sub-RPE-BL space might promote formation of whitlockite spherules (Figure 6). 

Interestingly, Mg+2 can substitute a small proportion of Ca+2 in the HAP lattice causing inhibition 

of HAP crystal growth, 43,46 possibly explaining the restricted size of spherules. In contrast, the 

absence of Mg in nodules may signify that low local Mg+2 concentrations facilitate continued 

crystal growth and thus greater size. Finally, despite detectable Mg in plaques, the low 

crystallinity and association of plaque calcification with BrM collagen and elastin  19,47 did not 

allow calcium phosphate phases to be identified. Importantly, after examining numerous sub-

RPE deposits of all sizes in our ongoing studies, we are yet to see one without spherules. Thus, 

we suggest that spherule formation is a natural endpoint for calcium phosphate formation, Mg+2 

in the sub-RPE-BL space keeps crystal growth at bay, whereas reduced Mg+2 levels lead to 

continuous nodule growth (Figure 6). As depicted on Figure 3, spherules and nodules coexist, 

but nodules seem to be visible on OCT at the later stages of AMD progression compared to 

spherules. BrM plaques by their focal spatial confinement can be contrasted with widespread 

BrM calcification in the inherited disorder pseudoxanthoma elasticum (OMIM 264800), 48 

suggesting again local pathogenic regulation of mineralization within the druse. In 

pseudoxanthoma elasticum, BrM is reflective with a rough surface on OCT; 49 whether the 

smaller plaques in AMD will be similarly visible is not yet known. 

What extracellular factors potentially modulate apatite formation in AMD? Organic 

molecules like functional groups of amino acids, as part of proteins in solution,50,51 can inhibit 

HAP formation. However, when immobilized or entrapped on surfaces,51,52 like in aged BrM, 

proteins can promote mineral deposition. Similarly, lipids can also nucleate mineral deposition, 

including both HAP and whitlockite. 53-55 Lipids and lipoproteins are abundant in soft drusen 

7,11,12. Direct support for lipid-associated mineralization includes the identification of a cholesterol 

core within spherules 9 as well as detection of phosphatidylcholine within sub-RPE deposits 

produced by confluent and functional RPE cells in culture. 22 Whilst the mechanism(s) and full 
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range of contributory proteins and lipids are yet to be identified, our data support a model of 

organic molecules nucleating mineral deposits. Once seeded, mineralized surfaces could 

become sites for further protein deposition.9,22 Independent of the seeding mechanisms, Ca and 

P supersaturation is essential to initiate mineralization. In tissues, Ca availability is tightly 

regulated with high affinity binding proteins 56 and extracellular phosphate concentration is low. 

57,58 Nevertheless, we observed HAP deposition by RPE cells cultured under standard 

conditions, suggesting that seemingly healthy RPE cells establish an environment conducive to 

mineral nucleation and growth. 22 How HAP deposition occurs in vitro and whether whitlockite 

formation can be promoted by modulating culture medium pH and Mg concentration can now be 

investigated.  

Under “normal” circumstances neither Mg nor Ca are available for mineralization. 

However, with aging, especially pathological aging, this appear to change. For mineralization to 

take place there needs to be high concentration of available Ca+2. In the presence of sufficient 

extracellular Mg+2, spherules are formed due to the presence of functional RPE overlying 

drusen. At low extracellular Mg+2 and high Ca+2, a condition that might be associated with 

increasingly non-functional RPE overlying drusen, the Mg control of mineral growth is lost and 

nodules start proliferating. In addition to extracellular nucleation, we also consider intracellular 

mechanisms that might promote Ca+2-Mg+2 imbalance and calcification in the sub-RPE-BL 

space, focusing attention on mitochondria. High calcium stores in mitochondria along with 

ultrastructurally visible microparticles of tricalcium phosphate suggested a role in extracellular 

HAP deposition in both health (e.g., bone) and in tissue injury. 59 This idea has received recent 

support with nano-analytic techniques applied to osteoblasts in culture. 60 Mitochondrial calcium 

stores released by failing RPE cells could exit to the extracellular sub-RPE-BL space and tip the 

Ca+2-Mg+2 balance towards nodule formation in AMD. The number of human RPE mitochondria 

declines with age, 61 especially in the macula. This decline is related to AMD severity and  
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mitochondrial DNA is damaged. 62,63 Opening of the mitochondrial permeability transition pore 

leads to swelling, rupture, and release of mitochondrial contents, including Ca+2, into the cytosol. 

64 A decrease in the levels of DICER1 in AMD eyes results in accumulated Alu-RNA, which is in 

turn associated with cytosolic release of mitochondrial DNA and presumably Ca+2 also. 65,66 

Interestingly, a review of data obtained from our RPE culture system failed to confirm the 

presence of Mg+2 within the in vitro mineralized deposits, suggesting that even these apparently 

functional cells are stressed and in Ca+2-Mg+2 imbalance. 22 

Pathways regulating sub-RPE Ca and Mg concentrations are unknown, suggesting 

aspects of cellular physiology needing exploration. Ca signaling by the RPE is well-studied and 

essential to the activity of apical and basolateral potassium and chloride channels that 

collectively regulate the ionic environment of photoreceptors, photoreceptor-RPE adherence, 

and net fluid efflux from retina to choroid. 67 Ca signaling is also important for health of 

lysosomes 68 needed for RPE processing of ingested photoreceptor tips and diet-delivered 

lipids. Mg homeostasis is less well studied, although in its ionic form, Mg+2 is required by many 

kinases, including those involved in maintaining apically located, inward-rectifying potassium 

currents in RPE. 69,70 Further, developmental Mg deficiency causes focal RPE degeneration and 

excess Ca/Mg ratio in retina.71 

 We do not yet have an OCT correlate for BrM plaques in AMD, of interest because BrM 

calcification and rupture is thought to promote neovascularization. 72 Vascular calcification is 

well-established in atherosclerotic cardiovascular disease, and nano-analytical imaging studies 

suggest that microcalcification along collagen and elastin fibers in intima is critical to the 

evolution of coronary lesions at risk for rupture.24,73,74 Atherosclerosis and AMD share 

commonalities of sub-endothelial lipoprotein deposition (in arterial intima and BrM), despite 

disassociation of top-level biologic risk factors (e.g., plasma LDL levels, apoE4 genotype), a 

paradox attributed to intraocular cholesterol and lipoprotein gene expression serving eye-
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specific physiology.75,76 Higher resolution OCT may someday allow visualization of BrM plaques 

and the understanding how these are associated with AMD.  

 In summary, ex vivo imaging showed 3 distinct refractile structures associated with GA: 

1) small highly crystalline whitlockite spherules that account for hyperreflective dots on OCT and 

NIR, 2) large nodules containing polycrystalline calcium phosphate and appearing 

hyporeflective on OCT and iso-reflective on NIR, and 3) amorphous crystalline plaques in BrM 

without an OCT imaging signature in AMD.  Common features amongst these are the Ca and P 

containing mineralization underpinned by previously unidentified molecular processes. Our 

proposed novel pathways for the mineralization in the sub-RPE-BL space are supported by 

multi-modal clinical and nano-analytic imaging and linked to histology (Supplementary Table 

1). Current data on the role of calcium in AMD pathogenesis are fragmentary. Calcium 

consumption has been associated with both increased prevalence77 and reduced incidence of 

late AMD, 78 and usage of calcium channel blockers was shown to increase AMD incidence. 79 

While the role of calcification in AMD thus needs further investigation, mineralomic research in 

atherosclerotic cardiovascular disease may provide a framework for discovering the molecular 

mechanisms resulting in progression to late AMD. Clinical detection of calcification in multi-

modal ophthalmic imaging may elucidate the relationship between local and systemic Ca+2 and 

Mg+2 regulation, oral supplementation, and the utility of targeting these processes for AMD 

treatment and prevention.  
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 Materials and Methods 

Clinical cohort of eyes with AMD 

Both clinical cohorts were approved by their respective Institutional Review Boards and 

complied with the Health Insurance Portability and Accountability Act of 1996 and the 

Declaration of Helsinki.  

Clinical cohort of eyes with intermediate AMD  

To establish the prevalence of HIRD, a cohort of a total of 840 eyes of 420 consecutive patients 

with AMD seen by a single retinal specialist (SRS) between 2010 and 2014 in a tertiary care 

academic retinal practice in Los Angeles was retrospectively reviewed. From this dataset, we 

selected all subjects who had at least one eye with evidence of intermediate AMD (defined 

according to the Beckman classification)80, no other posterior segment ocular disease, dense 

OCT volume scans  (Cirrus OCT with 128 B-scans over a 6x6 mm region centered on the 

fovea), and at least 12 months of follow-up data including OCT. Dense volume scans with this 

spacing of just under 50 µm between scans was required in order avoid missing the center of 

large drusenoid lesions between the B-scans, which was critical for reliable assessment of 

druse core reflectivity characteristics. Twelve months of follow-up data was required. When both 

eyes of one subject met these inclusion criteria, one eye was randomly selected for analysis. A 

total of 138 eyes from 138 subjects met these criteria. OCT scans at baseline were reviewed by 

certified OCT graders at the Doheny Image Reading Center to assess for presence of 

hyporeflective cores within the drusen. Graders were masked as to other clinical data regarding 

the patients. Clinical charts and follow-up imaging data were evaluated over the next 12 months 

to ascertain the frequency of progression GA or CNV.  
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Study cohort for multimodal imaging of 100 defined deposits 

To establish stages of deposit progression, a cohort of consecutive patients with heterogeneous 

internal reflectivity in drusen (HIRD) on OCT imaging, seen by a single retinal specialist (KBF) at 

a tertiary private retinal practice, was retrospectively reviewed.  

Inclusion criteria were eyes with GA with at least one HIRD seen on OCT with at least a 3 year 

follow up with OCT volume scans taken on at least 10 consecutive visits. The exclusion criteria 

included presence of any neovascular AMD during the course of follow up, other retinal vascular 

or degenerative diseases, and eyes with significant media opacity that affected imaging quality. 

Multimodal imaging protocol and analysis 

Detailed assessment of medical records and multimodal imaging including color fundus 

photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR) and OCT 

was performed on all the patients. CFP and FAF were performed with a TRC-50IX flood-

illuminated fundus camera (Topcon Corp, Tokyo, Japan). In some cases, FAF and in all cases 

spectral domain OCT imaging with corresponding NIR images was performed on Spectralis 

HRA+OCT scanning laser ophthalmoscope with OCT (Heidelberg Engineering, Heidelberg, 

Germany). Serial eye-tracked OCT scans were used to perform retrospective qualitative 

analysis from the baseline visit until the most recent visit, where the HIRD were detected. The 

OCT scanning protocol used in all eyes comprised 20˚ horizontal raster line scans over the area 

of interest ranging from 19-73 B-scans per eye, each scan spaced 62 to 250 µm apart 

depending on scan density, with automatic real-time averaging set between 5 and 12.  

To analyze HIRD, the most recent OCT B-scan that best represented the HIRD was identified 

and serial eye-tracked B-scans of that specific area was then extracted from the most recent 

visit back in time until the baseline visit. In cases where the scanning protocol varied during 

follow-up, the B-scan closest to the area of interest was matched manually and extracted for 
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analysis. Extracted OCT images and corresponding NIR images were then stacked, aligned and 

saved as a video file using FIJI (“Fiji is just Image J,” http://fiji.sc) 81 for qualitative analysis of 

lesion progression (see Supplementary Video). During the various time points, HIRD 

appearance on OCT was correlated to the appearance on CFP, NIR and FAF.  

The features on OCT seen such as the hyporeflective core, hyperreflective dots and 

hyperreflective needle like plaques were assessed for their location in the RPE-basal lamina-

BrM complex. Deep structures were defined as those that were located directly adjacent but 

within the axial resolution of the spectral domain OCT and in contact with the BrM and 

superficial structures were defined as those located above the BrM. HIRD seen on CFP was 

graded as a binary variable of refractile (1) versus non-refractile (0). 14 HIRD seen on NIR 

imaging was graded as non-reflective (0), mildly hyperreflective (1) and highly hyperreflective 

(2) (this can include focal or confluent areas of hyper-reflectivity). HIRD seen on FAF was 

graded as hypoautofluorescent (0), isoautofluorescent (1) and hyperautofluorescent (2). In 

cases where lesions had a mixed appearance such as a border or hyperautofluorescence with a 

central area of hypoautofluorescence the appearance of the majority of the lesion determined 

the final grade. 

Imaging-histology correlations in donor eyes with AMD 

Spectral domain OCT imaging of human donor eyes followed by high-resolution histology 

provided a link between clinical imaging and microanalysis of selected drusen. Three separate 

series of eyes were reviewed for suitable specimens, all drawn from a repository of ≥900 pairs 

of donor eyes accessioned from the Alabama Eye Bank for research purposes 1995-2012. 1) 

Eyes for OCT imaging and histology (Figures 2-3) were used for the creation of the Project 

MACULA online AMD histology resource (http://projectmacula), 142 maculas (82 AMD, 60 age-

matched controls), median death-to-preservation time was 3.62 hours (range, 0.67-12.15 

http://projectmacula.cis.uab.edu/
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hours). These were subject to ex vivo multimodal imaging including OCT, NIR, and 488 nm and 

787 nm FAF, using a custom tissue holder and a Spectralis HRA+OCT (Heidelberg 

Engineering, Heidelberg Germany), in addition to digital color photography.40 Specimens were 

post-fixed in osmium tannic acid paraphenylenediamine to preserve extracellular lipid, 

embedded in epoxy resin, sectioned at 0.8 µm, and stained with toluidine blue.26 2) For 

advanced mineralomics, one eye with distinctive glistening drusen from the ALARMGS series of 

eyes (n=30)26 was used and shown in Supplementary Figure 1. All eyes underwent ex vivo 

color imaging using epi- and trans-scleral illumination, followed by post-fixation in osmium only, 

en bloc staining with uranyl acetate, and epoxy embedding. 3) Large macular drusen previously 

imaged by ex vivo color reflectance photography, micro-dissected, and histologically confirmed 

as having mineralized contents were used for advanced mineralomics in Figures 4-5.27 In this 

series of 9 eyes of 7 donors, macular soft drusen were manually isolated and post-fixed by the 

osmium tannic acid paraphenylenediamine method. 

In addition to these clinically undocumented eyes, the left eye of a patient with in vivo clinical 

OCT was used for direct clinicopathologic correlation (Figure 2A-D). An 86-year-old white 

woman had geographic atrophy in the left eye. Four months after the last clinic visit, and 7:30 hr 

after death, eyes were recovered and preserved by perfusion as described.82 Histological 

preparation was the same as the first series described above.  

Sample source for mineralomic studies 

After acquiring ethical approval, human cadaveric eyes with sub-RPE deposits and Bruch’s 

membrane plaques were obtained from the University College London Institute of 

Ophthalmology and Moorfield’s Eye Hospital Tissue Repository. Cadaveric eyes were 

enucleated 12-24 hours after death and preserved in 1% glutaraldehyde with 4% 

paraformaldehyde. Spherules, nodules, and plaques were identified in these specimens by 
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comparison of morphology to specimens with clinical and/ or ex vivo imaging documentation of 

AMD with large macular drusen, as described above.  

Scanning electron microscopy and Energy dispersive x-ray spectroscopy 

Scanning electron microscopy was performed on fixed, paraffin-embedded human cadaveric 

tissues and on isolated nodules embedded in epoxy resin. Human cadaveric tissues were 

sectioned at a thickness of 10 µm and collected on glass slides. Paraffin wax was removed by 

washing with xylene, followed by dehydration in a graded alcohol series (30, 50, 70, 90, 100% 

Ethanol) and chemical critical point drying with hexamethyldisilazane (Sigma Aldrich, USA) for 5 

minutes. Tissues were then air-dried in a fume hood for 1 hour at room temperature. Isolated 

nodules were fixed and dehydrated prior to embedding in epoxy resin. Embedded nodules were 

sectioned at a thickness of 2 µm using an ultramicrotome (Leica Biosystems, Germany) and 

collected on glass slides.  Epoxy resin was then etched from the isolated nodules using sodium 

methoxide (Sigma Aldrich, USA).  

After dehydration and etching, glass slides with tissues were mounted on aluminum stubs (Agar 

Scientific, UK) using double-sided carbon adhesive tabs (Agar Scientific, UK). To ensure 

conductivity of the sample, double-sided conductive copper tape was used to form a bridge 

between the underside of the stub and the glass surface (Agar Scientific, UK). Samples were 

then sputter coated with a 1 nm thick layer of platinum. 

Scanning electron microscopy was performed on a Zeiss Sigma VP scanning electron 

microscope (Carl Zeiss AG, Germany) equipped with a secondary electron detector and a 

backscattered electron detector. High-resolution images were obtained using the secondary 

electron detector whilst density differences were imaged using the backscattered electron 

detector. For secondary electron imaging, an accelerating voltage of 3 kV, an aperture of 30 µm 

and a working distance of 2-4 mm were used. For backscattered electron imaging, an 
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accelerating voltage of 10-15 kV, an aperture of 120 mm, and a working distance of 8-10 mm 

were used.  

Density dependent colored-scanning electron micrographs (DDC-SEM) were generated post-

acquisition of electron micrographs. Micrographs were collected with a secondary electron 

detector and the identical region captured using a backscattered electron detector. The 

secondary electron micrographs provide high-resolution details of the tissue whilst the 

backscattered electron micrographs provide information regarding density changes within the 

sample. Regions of red/orange color observed on DDC images indicate areas of dense 

material, likely mineral, whilst green indicates soft tissues. 

Energy dispersive x-ray spectroscopy was performed on a Philips XL30 FEG-SEM (FEI, USA) 

equipped with an energy dispersive x-ray spectroscopy elemental analysis system (Oxford 

Instruments, UK). An accelerating voltage of 20 kV and a spot size of 5 was used. Samples 

were coated with platinum or carbon over gold/palladium to avoid overlapping of the KL3 

phosphorus energy emission with the low emission energies of gold.  

 

Secondary ion mass spectrometry of calcific lesions 

To ensure samples suitable for the ultra-high vacuum conditions required for secondary ion 

mass spectrometry, tissues were dehydrated as described for scanning electron microscopy. 

Time of flight – secondary ion mass spectrometry (TOF-SIMS) and secondary ion mapping was 

conducted using a TOF.SIMS5-Qtac100 LEIS mass spectrometer (ION-TOF, Munster, 

Germany). A bismuth primary ion beam with an incident energy of 25 kV and operating with a 

Bi3+ cluster ion source was employed for greater secondary ion yield. For charge 

compensation, a low energy electron flood gun was used. Secondary molecular ions 0-880 m/z 

were mapped at sub-micron resolution using software supplied by ION-TOF.  
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Synchrotron microfocus x-ray fluorescence 

Synchrotron micro-focus x-ray fluorescence experiments were conducted on beamline 83 at 

Diamond light source, Didcot, UK. Epoxy resin-embedded cross-sections were mounted on 

silicon nitride membrane windows (membrane, 5.0 x 5.0 mm, 500 nm thick; Silson, UK) as these 

contained no detectable contaminating metals. Incident beam energy of 17.15 keV was used to 

excite the elements of interest, with a focused spot size of 2.5 µm x 2.5µm (H x V), and a 

photon flux of 5.8e+10 photons/second. The beam was raster scanned over the region of 

interest with an acquisition time of 1 second per point and a step size of 1 µm in both vertical 

and horizontal directions. The fluorescence signal from the sample was detected using a 4-

element SI drift fluorescence detector. Raw data were recorded in NeXus format using Diamond 

Light Source software. Analysis and generation of elemental maps were performed using 

PyMca, a multiplatform software package developed by the ESRF, Grenoble 84. 

Hydroxyapatite specific fluorescent labelling of calcific lesions 

Isolated nodules and cadaveric tissues known to contain calcium phosphate lesions were 

stained with Osteosense 680EX (Perkin Elmer, USA), a fluorescent bisphosphonate imaging 

agent used to observe ectopic calcifications. Prior to staining, isolated nodules embedded in 

epoxy resin were sectioned at a thickness of 200 nm using a Leica RM2225 Ultramicrotome, 

collected on glass slides, and washed in distilled water. For fixed and paraffin embedded human 

cadaveric tissues, 10 µm thick cross sections were generated, dewaxed in xylene, and 

rehydrated with a graded alcohol series. Both sample types were then incubated with 

Osteosense 680EX diluted in distilled water (Dilution: 0.002 nm/µl) for 20 minutes, at room 

temperature and in the dark. After incubation with OsteoSense, samples were washed with 

distilled water for 10 minutes, and mounted in 70% glycerol diluted in PBS. Stained samples 
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were imaged using a Leica TCS SP8 confocal laser-scanning microscope and a 63X oil 

immersion lens. An excitation wavelength of 668 nm and an emission wavelength of 687 nm 

were used. 

Focused ion beam milling of cadaveric tissues 

To generate 100 nm cross sections suitable for TEM-SAED, samples containing calcific lesions 

of interest were milled using a focused ion beam (FIB). Use of a focused ion beam prevents 

artefactual damage to the atomic arrangement of the mineral deposits of interest and thus 

prevents false results. Carbon sputtered samples were used, as platinum or gold sputtering 

prevents ion beam milling. FIB milling was performed on FEI Helios NanoLab DualBeam (FEI 

Corporate, Oregon, USA).  

In advance of FIB milling, 15 x 2 µm regions containing calcific lesions of interest (nodule, 

spherules or BrM plaques) were coated with a 2 µm thick layer of platinum. Application of a 

platinum coat ensured lesions were protected whilst milling was completed. FIB milling was 

performed using a gallium ion (Ga+) source at a current of 2.8 nA and a resolution of ~5-10 nm. 

Tissue adjacent to the platinum protected tissue was milled to a depth of 10 µm and a width of 2 

µm along the entire length of the platinum coat. Upon generating a 15 µm thick section beneath 

the platinum coat, the sample was rotated 90 degrees and the sample thinned to 100 nm. 

Thinning of the section was achieved using the Ga+ beam at a current of 28 pA to 2.8 nA. After 

thinning, sections were collected on to copper grids using the OmniProbe Autoprobe 200 in-situ 

lift-out system (Oxford Instruments, UK). Milled sections were collected on OmniProbe lift-out 

copper grids (Oxford Instrument, UK) designed to fit standard TEM grid holders. Platinum 

coating was used to fix the OmniProbe to the sample. The Ga+ beam was then used to detach 

the section attached to the OmniProbe from the sample. Platinum was then applied to the 
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OmniProbe lift-out copper grid and the sample attached. The Ga+ beam was then used to 

detach the OmniProbe was the section and copper grid. 

Transmission electron microscopy – selected area electron diffraction  

The mineral phase of isolated nodules, spherules and Bruch’s membrane plaques were 

determined using selected area electron diffraction (SAED). SAED was performed on a JEOL 

2000FX TEM operating with an acceleration voltage of 120 kv.  

 

Supplementary Material: 

Figure S1: Refractile drusen with nodules and RPE atrophy in the index case for microanalysis.  

Figure S2. Scanning electron microscopy of isolated nodules.  

Figure S3. Density dependent color – scanning electron microscopy of calcific lesions.  

Figure S4. Synchrotron microfocus x-ray fluorescence confirms the presence of Ca in large 

nodules.  

Figure S5. Time of flight-secondary ion mass spectrometry confirms the presence of calcium 

phosphate within nodules.  

Figure S6: Appearance of heterogeneous internal reflectivity in drusen (HIRD) as seen on 

multimodal imaging during progression.  

Figure S7: Appearance of heterogeneous internal reflectivity in drusen (HIRD) 

Table S1: Composition and appearance of calcified structures in eyes with geographic atrophy 

as revealed by multi-modal clinical and molecular imaging. 
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Table S2: D spacings and I/Imax (%, 3 d.p.) of candidate calcium phosphate compounds. 

MOVIE S1: Serial eye-tracked optical coherence tomography scans.   
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Figure 1: Multi-modal imaging of 3 types of calcified structures in advanced AMD. Heterogeneous 

internal reflectivity in drusen (HIRD), reflective dots, and plaques, seen on optical coherence tomography 
(OCT) (top), color fundus photography (CFP) (top middle), fundus autofluorescence (FAF) (bottom 
middle) and near-infrared imaging (NIR) (bottom). HIRD with a hyporeflective core (red arrow) and a 
hyperreflective cap (pink arrowhead), hyperreflective dots (green circle), and a hyperreflective plaque 
within Bruch’s membrane (blue arrowhead) are indicated. 
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Figure 2: In vivo and ex vivo imaging of heterogeneous internal reflectivity within drusen 

(HIRD) correlated to nodules in histology. NFL, nerve fiber layer; IPL, inner plexiform layer; 
INL, inner nuclear layer; HFL, Henle fiber layer; ONL, outer nuclear layer; BLamD, basal laminar 
deposit (a thickening of basement membrane material between the RPE and its basement 
lamina); Ch, choroid; Sc, sclera. Yellow arrowheads, calcific nodules; green arrowheads, 
BLamD; Black arrowheads, Bruch’s membrane. A-D: Eye of an 86-year-old white female with 
geographic atrophy (GA) imaged in vivo 4 months before death. A. NIR image shows 
translucent large drusen. Green line, level of optical coherence tomography (OCT) scan in panel 
B. Yellow frame, druse on panel B-D. B. OCT shows HIRD. C. Druse corresponding to the 
HIRD. Large refractile nodules are surrounded by lipid-rich soft druse material (gray). SDD, 
subretinal drusenoid deposits. D. Panoramic light microscopy. The HIRD of panel B and the 
druse are the same distance from the optic nerve head. E-H. Eye of a 94-year-old white female 
with GA, imaged ex vivo. E. Color fundus photography shows refractile drusen in the superior 
temporal quadrant. Green line, level of OCT scan in panel F. F. Yellow frame denotes an HIRD. 
G. Calcific nodules are surrounded by processes of Müller cells. Overlying BLamD is thin and 
fragmented. H. Context of calcified druse, showing degeneration of outer retina including gliotic 
Henle fiber layer and absent photoreceptors. Submicrometer epoxy resin sections of OTAP-
post-fixed specimens, toluidine blue stain. Separation of retina from RPE (B) and choroid from 
sclera (H) is artifactual. 
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Figure 3: Histological variants of calcific nodule formation and RPE degeneration in 

geographic atrophy. Submicrometer epoxy resin sections of OTAP-post-fixed specimens, 
toluidine blue stain. INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigment 
epithelium; green arrowheads, basal laminar deposit (BLamD); c, calcific nodule; black circle, 
calcific spherules; black arrowheads, calcification within Bruch’s membrane; red arrowheads, 
RPE/ RPE derived material as indicated; Ch, choroid. A. Small soft druse (d) containing 
lipoprotein-derived debris (artifactually fractured) and intact overlying RPE. B. Small soft druse 
with partial contents, refractile nodules, and intact overlying RPE. C. Calcific nodules and 
spherules and RPE-derived granule aggregates, with partial covering of RPE and 
photoreceptors, and lacking BLamD. D. Druse with calcific nodules and nucleated ‘subducted’ 
RPE with thick overlying BLamD and nearly complete coverage by RPE. E. Calcific nodules with 
very thin BLamD and no RPE. F. Calcific nodules with thin BLamD and ‘subducted’ RPE. G. 
Calcific nodules with thin (left) and thick (BLamD) 
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Figure 4: Scanning electron microscopy and energy dispersive x-ray spectroscopy of 

nodules, spherules and plaques. A-D High-magnification electron micrographs of calcific 
lesions. A. A nodule composed of lobed units ~1-5 µm in diameter. Cracks present on the 
nodule surface were formed during sectioning. B. Spherules approximately 0.5-5.0 µm in 
diameter were located between the basal lamina of the RPE and the inner collagenous layer of 
BrM. Extracellular material was also visible within deposits. C. Plaques, tens of microns in 
length, appeared visually similar to non-mineralized BrM. Cracks visible in the BrM indicated 
potential mineralization. E-J. Elemental maps of nodules, spherules and plaques generated 
using energy dispersive x-ray spectroscopy (EDX). E-G. Ca signaling was significantly greater 
in nodules, spherules and plaques compared to the background tissues. H-J. X-ray emissions 
specific to P were considerably greater in mineralized lesions compared to background. K-M. 
On EDX spectra, the most prominent peaks for nodules, spherules and plaques were 2.01 and 
3.69 keV, these correlated to P (Peak 6) and Ca (Peaks 7, 8), respectively. In spherules and 
plaques, a small distinct peak characteristic of magnesium was also present (Peak 4), however 
this was greatly reduced in nodules. Peaks representative of organic tissues including carbon 
(Peak 1), oxygen (Peak 2), and sodium (Peak 3) were also present. Signals for C and O also 
originate from the calcific lesions. Silicon (Peak 5), a component of glass, was also detected. N-
P. Hydroxyapatite-specific staining confirmed the presence of apatite in nodules, spherules and 
plaques (arrowheads delimit the BrM). 
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Figure 5: Figure 5. Transmission electron microscopy and selected area electron 

diffraction of nodules, spherules and plaques. A-C. Low magnification electron micrographs 
of nodules, spherules and plaques. A. Nodules were composed of multiple sub-units (lobes) 1-
20 µm in diameter. B. Spherules 0.5-5 µm in diameter exhibited increased electron density. C. 
Plaques exhibited increased electron density and appeared crossed over and fibrous (inset 
image). D-F. High-magnification electron micrographs of calcific lesions associated with AMD. 
D. A single “lobe” sub-unit of a nodule. Each lobe has an electron dense crust and a less 
electron dense core. E. Spherules displayed a heterogeneous structure; needle crystal-like 
structures formed a shell surrounding a less electron dense core. F. High-resolution micrograph 
of a plaque. White arrowheads indicate regions where the lattice is visible. G-I. Selected area 
electron diffraction of nodules, spherules, and plaques. A typical diffraction pattern obtained 
from each lesion is shown. Supplementary Table 2 details additional reflexions identified by 
SAED but not indicated on figures. G. Nodules were indexed to HAP. A sharp diffraction ring for 
(002) was present, whilst a single diffuse ring was present for reflexions (211), (112) and (300). 
Rings characteristic of (221) and (004) were also observed. Diffraction patterns for the crust and 
the core were similar. H. The mineral component of spherules was identified as Whitlockite. 
Zone Axes (010) of Whitlockite was identified with vector points for (-102), (006) and (104). I. 

Diffraction patterns obtained for BrM plaques produced a diffuse ring characteristic of apatite.  
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Figure 6: Figure 6: Proposed progression stages of calcified structures in AMD. Schematic 

(far left) and multimodal clinical imaging of nodule (white), HAP spherule (black) and BrM 
plaque (white) formation. Stage 1: Soft druse, no calcification, RPE intact (blue), with BLamD 
(green). Appears as non-glistening on CFP, isoautofluorescent on FAF, iso-reflective on NIR, 
and a hyperreflective intact RPE band overlying homogeneous sub-RPE contents on OCT. 
Extracellular environment has acidic pH; Mg+2, Ca+2, and inorganic phosphate is present. Stage 
2A: Initiation of nodule formation. BLamD is present (above) and RPE migration occurs (blue 
dots). Appears as mostly non-glistening on CFP, mostly hyperautofluorescent on FAF, 
increasing focal areas of hyper-reflectivity on NIR and a hyporeflective area (nodule) within a 
druse with intact RPE on OCT. Extracellular environment has changed to neutral pH with lower 
levels of Mg+2. Stage 3A: Focal areas of RPE atrophy (blue dotted line), more HAP spherules 
observed. Increasing glistening areas on CFP, hypoautofluorescent centers with surrounding 
hyperautofluorescent borders on FAF, hyperreflective on NIR, and a focal loss of hyperreflective 
RPE with surrounding hyperreflective dots (HAP spherules) on OCT. Stage 4A: Complete RPE 
loss, almost complete loss of druse contents, nodule with overlying thin veil of BLamD.  Appears 
as a greater glistening area on CFP, a confluent area of hypoautofluorescence on FAF, 
hyperreflective on NIR, and complete loss of the RPE band with a hyporeflective core and a 
hyperreflective border on OCT. Stage 2B, 3B and 4B: Similar to respective “A” stage with a 

thicker BLamD cap (green) that appeared hyperreflective on OCT. 
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Figure S1: Refractile drusen with nodules and RPE atrophy in the index case for 
microanalysis. This 83-year-old white female donor had 20/60 vision recorded at last 
examination 7 months before death.26 Submicrometer epoxy sections section of osmium-post-
fixed specimen, toluidine blue stain. GCL, ganglion cell layer; INL, inner nuclear layer; HFL, 
Henle fiber layer, ONL, outer nuclear layer, Ch, choroid; Sc, sclera. A. Ex vivo color fundus 
photograph shows refractile drusen shown in panel D and E (yellow arrowheads), a soft druse 
(red arrowhead) and central RPE atrophy. Green line indicates section plane of panels D and E. 
B. Cumuloid druse with nodules, temporal to fovea, shown in panel E. C. Typical extrafoveal 
druse in this case. A similar druse is present in panel E. D. Panoramic view of section through 
superior edge of the foveal floor (segment D in panel A). PED, serous pigment epithelium 
detachment with overlying intact RPE and ‘sloughed’ and ‘subducted’ 85,86 RPE (top and bottom 
black arrowheads, respectively). X, post-mortem artifact. G, Friedman lipid globule 87. Yellow 
arrowhead, refractile druse with nodules, some of which are dislodged. White arrowheads 
delimit atrophic area. E. Panoramic view of temporal perifovea (segment E in panel A). White 
arrowheads delimit atrophic area. Red arrowhead, soft druse. Yellow arrowhead, large refractile 
druse, also shown in Supplementary Figures 3 and 4.  
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Figure S2. Scanning electron microscopy of isolated nodules. A-E. Isolated nodules 
embedded in epoxy resin were sectioned at 2 µm followed by etching with sodium methoxide. 
Electron micrographs were obtained using a secondary electron detector. A. Scanning electron 
micrograph of an isolated nodule. The lobed sub-units of nodules show great variation in size. 
Most have a distinct crust and core. B and C. Etching of the epoxy resin revealed the 
topographic structure of the nodule surface. Nodules had uneven surfaces reminiscent of a 
sponge-like tissue. D. A small isolated nodule also formed of smaller lobed subunits. Distinct 
crusts are also visible. E and F. High-magnification images showing the distinct crusts 

(arrowheads) present on each of the lobed sub-units. 
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Figure S3. Density dependent color – scanning electron microscopy of calcific lesions. 
A-F. Density dependent color-scanning electron microscopy (DDC-SEM) enables visualization 
of dense material (red/orange), likely mineral deposits, within soft tissues (green) A.  A high-
resolution secondary electron micrograph of a multi-lobed nodule that is ~80-100 µm in 
diameter. B. A backscattered image of the region imaged in A. The nodule and short regions of 
BrM appear white indicating dense material. The surrounding soft tissues are not visible 
suggesting they are composed of less dense biological material. C. The dense nodule appears 
red/orange whilst the surrounding soft tissues appear green. A-C. Arrowheads indicate atrophy 
of the photoreceptor layer and the outer most layers of the neural retina whilst the asterisk 
indicates a nodule region artifactually removed during processing. D. A secondary electron 
micrograph of a sub-RPE deposit containing a spherule (arrow) and a BrM plaque (Arrowhead). 
Note that the appearance of the plaque is similar to non-mineralized BrM when imaged with a 
secondary electron detector.  E. A backscattered electron micrograph of the identical region 
imaged for D. Spherules and plaques appear white indicating dense material. The plaque 
displays intermittent mineralization along BrM. F. Spherules and BrM plaques appear 
red/orange indicating dense material. Extracellular materials within the sub-RPE deposit as well 
as the surrounding soft tissue appear green. RPE, retinal pigment epithelium; BrM, Bruch’s 
membrane; Chr, Choroid. 
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Figure S4. Synchrotron microfocus x-ray fluorescence confirms the presence of Ca in 
large nodules. A. A toluidine blue stained cross section containing a nodule. Increased 
toluidine blue staining in the BrM was observed (arrowhead), potentially indicating 
mineralization. An adjacent cross section of the same nodule was analysed by µXRF analysis. 
Ex vivo clinical images of this lesion are shown in Supplementary Figure 1. B. An optical image 
of the adjacent section. The purple and green coloration is due to the silicon nitride substrate. C. 
µXRF showing localization of Ca within nodules. Ca was also detected in the BrM (arrow head), 
correlated to the increased toluidine blue staining observed in A. 
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Figure S5. Time of flight-secondary ion mass spectrometry confirms the presence of 
calcium phosphate within nodules. A-C. Secondary molecular ion maps of Ca+, CaPO2+, 
Ca3PO5+ confirmed the localization of calcium and phosphate within nodules. D. A secondary 
molecular ion map of summed calcium phosphate peaks indicative of hydroxyapatite. 
Secondary ions include: 39.9 m/z, [Ca+]; 55.9 m/z, [CaO+]; 102.9 m/z, [CaPO2

+]; 158.9 m/z, 
[Ca2PO3

+]; 174.9 m/z, [Ca2PO4
+]; and 230.8 m/z, [Ca3PO5

+]. Scale bars: A-D 20 µm. 
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Figure S6: Appearance of heterogeneous internal reflectivity in drusen (HIRD) as seen on 
multimodal imaging during progression. N = number of lesions seen at each stage where 
the relevant imaging is available. CFP (top) shows increased percentage of glistening dots over 
the HIRD as the overlying RPE is lost, thus exposing hyperreflective dots (HAP spherules) at 
the surface. FAF (middle) shows increased hypoautofluorescence as the overlying RPE is lost. 
NIR imaging shows an increasing percentage of highly refractile HIRD as the overlying RPE is 
lost and HAP spherules in drusen are exposed.  
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Figure S7: Appearance of heterogeneous internal reflectivity in drusen (HIRD) in variation 
A and B as seen on multi modal imaging during progression. N = number of lesions seen at 
each stage where the relevant imaging is available. No statistically significant difference 
(p>0.05) was seen (chi-square test) between the appearance at each stage. Subtle differences 
exist mostly in Stage 4 where the RPE is lost and a thin (Variation A) or thick (Variation B) basal 
lamina deposit is exposed. CFP (top) shows that at Stage 4B compared to Stage 4A, fewer 
HIRD are glistening, which may be due to HAP spherules covered by BLamD. FAF (middle) of 
Stage 4B shows more hyperautofluorescence than Stage 4A. NIR imaging shows a smaller 
percentage of highly hyper-reflective HIRD in Stage 4B versus 4A. 
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Table S1: Composition and appearance of calcified structures in eyes with geographic 

atrophy as revealed by multi-modal clinical and molecular imaging. 

 Spherules Nodules  Plaques 

Composition Hydroxyapatite Calcium, phosphate, silicon Calcium phosphate 

Light microscopy, ≤2000X 

viewing magnification 

Refractile, spheres Refractile, lobular Refractile, horizontal plaque 

in the 3 middle layers of 

Bruch’s membrane, not in 

the basal laminas of RPE or 

choriocapillaries 

 Clinical multi-modal imaging 

Color fundus photo Glistening, reflective Yellow, non-glistening Glistening, reflective 

Near-infrared reflectance Hyperreflective Iso/hyperreflective Hyperreflective 

Fundus autofluorescence Not seen Within areas of 

hypoautofluorescence 

Within areas of 

hypoautofluorescence  

Optical coherence 

tomography 

Hyperreflective dots Hyporeflective core Hyperreflective line 

 Molecular multi-modal imaging 

In lens scanning electron 

microscopy 

 

0.5-5 µm diameter, isolated 

or clustered, heterogeneous 

surface structure 

Multiple lobes, a single lobe 

is typically larger than a 

spherule, overall ≤100 µm 

diameter, heterogeneous 

surface structure 

Indistinguishable from non-

mineralized BrM  

Backscatter scanning 

electron microscopy 

0.5-5 µm diameter, 

spherules appear white, soft 

tissue appears black 

A white crust highlights the 

edge of each lobe, 

fragments within the lobes 

have reduced brightness, 

soft tissue appears black 

 

BrM appears white at sites 

of mineralization, soft tissue 

appears black 

Transmission electron 

microscopy 

0.5-5 µm diameter, solid 

spherical particles are 

electron dense compared to 

biological tissue, variation in 

electron density within 

spherules 

 

Multi-lobed solid structure. 

Lobes vary in size from 1-20 

µm, lobes have a highly 

electron dense crust and a 

less dense core. High 

magnification reveals small 

crystal like particles 

BrM plaques are electron 

dense, have a feathery 

cross-hatched appearance 

related to collagen fibrils at 

low magnifications. At high 

magnifications, the lattice 

structure can be observed 

at isolated regions 
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Table S2: D spacings and I/Imax (%, 3 d.p.) of candidate calcium phosphate compounds.  

A table detailing D-spacings (angstroms) and relative intensities of zone axes reflections 

(I/Imax) for several candidate calcium phosphates.  D-spacings calculated from collected SAED 

of nodules, BrM plaques, and spherules are highlighted in orange cells. D-spacings were 

obtained from multiple diffraction patterns from the same lesion. D-spacings obtained for 

nodules and BrM plaques are more similar to HAP than to Fluorapatite, Monetite, OCP, B-TCP 

and Brushite. 
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MOVIE S1: Serial eye-tracked optical coherence tomography scans to document the 

progression of nodules, spherules and Bruch’s membranes plaques over 6 years. Multiple 

similar videos were used to observe the progression of individual lesions over time. 

  

 


