183 research outputs found

    Numerical simulations of tungsten targets hit by LHC proton beam

    Get PDF
    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a tungsten component due to the impact with a proton beam generated by LHC. The solved problems represent some accidental cases consequent to an abnormal release of the beam: the energy delivered on the components is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA

    The "Multimat" experiment at CERN HiRadMat facility: advanced testing of novel materials and instrumentation for HL-LHC collimators

    Get PDF
    The increase of the stored beam energy in future particle accelerators, such as the HL-LHC and the FCC, calls for a radical upgrade in the design, materials and instrumentation of Beam Intercepting Devices (BID), such as collimators Following successful tests in 2015 that validated new composite materials and a novel jaw design conceived for the HL-LHC collimators, a new HiRadMat experiment, named “HRMT36-MultiMat”, is scheduled for autumn 2017. Its objective is to determine the behaviour under high intensity proton beams of a broad range of materials relevant for collimators and beam intercepting devices, thin-film coatings and advanced equipment. The test bench features 16 separate target stations, each hosting various specimens, allowing the exploration of complex phenomena such as dynamic strength, internal damping, nonlinearities due to anisotropic inelasticity and inhomogeneity, effects of energy deposition and radiation on coatings. This paper details the main technical solutions and engineering calculations for the design of the test bench and of the specimens, the candidate target materials and the instrumentation system

    Preliminary Exploratory Study of Different Phase II Collimators

    Get PDF
    The LHC collimation system is installed and commissioned in different phases, following the natural evolution of the LHC performance. To improve cleaning efficiency towards the end of the low beta squeeze at 7TeV, and in stable physics conditions, it is foreseen to complement the 30 highly robust Phase I secondary collimators with low impedance Phase II collimators. At this stage, their design is not yet finalized. Possible options include metallic collimators, graphite jaws with a movable metallic foil, or collimators with metallic rotating jaws. As part of the evaluation of the different designs, the FLUKA Monte Carlo code is extensively used for calculating energy deposition and studying material damage and activation. This report outlines the simulation approach and defines the critical quantities involved

    Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene

    Get PDF
    G.M.P. and E.C. contributed equally to this work. G.M.P. acknowledges the financial support from Fondazione Cariplo, grant no. 2018-0979. The authors thank the financial support from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 643238 (SYNCHRONICS). The authors also thank Dr. Daniele Viola for helping with the analysis of the TA data.The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.Fondazione Cariplo. Grant Number: 2018‐0979EU Horizon 2020 Research and Innovation Programme. Grant Number: 64323

    Design, Production and First Commissioning Results of the Electrical Feedboxes of the LHC

    Get PDF
    A total of 44 CERN designed cryogenic electrical feedboxes are needed to power the LHC superconducting magnets. The feedboxes include more than 1000 superconducting circuits fed by high temperature superconductor and conventional current leads ranging from 120 A to 13 kA. In addition to providing the electrical current to the superconducting circuits, they also ensure specific mechanical and cryogenic functions for the LHC. The paper focuses on the main design aspects and related production operations and gives an overview of specific technologies employed. Results of the commissioning of the feedboxes of the first LHC sectors are presented

    Design, construction, and beam tests of a rotatable collimator prototype for high-intensity and high-energy hadron accelerators

    Get PDF
    A rotatable-jaw collimator design was conceived as a solution to recover from catastrophic beam impacts which would damage a collimator at the Large Hadron Collider (LHC) or its High-Luminosity upgrade (HL-LHC). One such rotatable collimator prototype was designed and built at SLAC and delivered to CERN for tests with LHC-type circulating beams in the Super Proton Synchrotron (SPS). This was followed by destructive tests at the dedicated High Radiation to Materials (HiRadMat) facility to validate the design and rotation functionality. An overview of the collimator design, together with results from tests without and with beam are presented

    Raman scattering and FT-IR spectroscopic studies on dithienylethene switches—towards non-destructive optical readout

    Get PDF
    The non-destructive readout of photochromic memory materials based on the dithienylethene unit both by IR spectroscopy and Raman scattering is explored. A representative series of C5-substituted thienyl hexahydro- and hexafluoro-cyclopentene based photochromes was investigated to explore the effect and potential usefulness of substitution for the development of multicomponent memory materials. The effect of the deposition method on the photochemistry of solid materials containing photochromic dithienylcyclopentene switches was also explored. Photoconversion in the solid state to the closed form was found to be low when starting from the open form, but, in contrast, ring opening to the open state from the closed form was found to be complete. The effect was found to be due to inner filter rather than conformational phenomena. Characteristic vibrational bands for the central dithienyl core are assigned and a comparison made of the vibrational spectroscopic properties of the perhydro- and perfluoro switches. The data enable the determination of the photoconversion achievable in the solid state as well as some assessment of the influence of the deposition method on the photoconversion. The potential of Raman spectroscopy as a method of achieving non-destructive optical readout is demonstrated through the large differences in absolute Raman scattering intensity between the open and closed states, when monitored at wavelengths which do not result in photochemical ring opening.
    • 

    corecore