270 research outputs found
On the application of piezolaminated composites to diaphragm micropumps
This paper deals with the numerical simulation of piezolaminated microplates adopted as actuators in micropumps. The performances of piezoelectric actuation is critically assessed by means of comparisons with devices based on the electrostatic force
Mechanical robustness of HL-LHC collimator designs
Two new absorbing materials were developed as collimator inserts to fulfil the requirements of HL-LHC higher brightness beams: molybdenum-carbide graphite (MoGr) and copper-diamond (CuCD). These materials were tested under intense beam impacts at CERN HiRadMat facility in 2015, when full jaw prototypes were irradiated. Additional tests in HiRadMat were performed in 2017 on another series of material samples, including also improved grades of MoGr and CuCD, and different coating solutions. This paper summarizes the main results of the two experiments, with a main focus on the behaviour of the novel composite blocks, the metallic housing, as well as the cooling circuit. The experimental campaign confirmed the final choice for the materials and the design solutions for HL-LHC collimators, and constituted a unique chance of benchmarking numerical models. In particular, the tests validated the selection of MoGr for primary and secondary collimators, and CuCD as a valid solution for robust tertiary collimators
Measurements of heavy ion beam losses from collimation
The collimation efficiency for Pb ion beams in the LHC is predicted to be
lower than requirements. Nuclear fragmentation and electromagnetic dissociation
in the primary collimators create fragments with a wide range of Z/A ratios,
which are not intercepted by the secondary collimators but lost where the
dispersion has grown sufficiently large. In this article we present
measurements and simulations of loss patterns generated by a prototype LHC
collimator in the CERN SPS. Measurements were performed at two different
energies and angles of the collimator. We also compare with proton loss maps
and find a qualitative difference between Pb ions and protons, with the maximum
loss rate observed at different places in the ring. This behavior was predicted
by simulations and provides a valuable benchmark of our understanding of ion
beam losses caused by collimation.Comment: 12 pages, 20 figure
Programmable CGH on photochromic plates coded with DMD generated masks
Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing. Present technology allows for recording binary CGHs. We propose a Digital Micro-mirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. Opaque at rest, this plate becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, with a contrast greater than 50, which was reconstructed with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates
Light-triggered cardiac microphysiological model
Light is recognized as an accurate and noninvasive tool for stimulating excitable cells. Here, we report on a non-genetic approach based on organic molecular phototransducers that allows wiring- and electrode-free tissue modulation. As a proof of concept, we show photostimulation of an in vitro cardiac microphysiological model mediated by an amphiphilic azobenzene compound that preferentially dwells in the cell membrane. Exploiting this optical based stimulation technology could be a disruptive approach for highly resolved cardiac tissue stimulation
Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene
G.M.P. and E.C. contributed equally to this work. G.M.P. acknowledges
the financial support from Fondazione Cariplo, grant no. 2018-0979. The
authors thank the financial support from the EU Horizon 2020 Research
and Innovation Programme under Grant Agreement No. 643238
(SYNCHRONICS). The authors also thank Dr. Daniele Viola for helping
with the analysis of the TA data.The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.Fondazione Cariplo. Grant Number: 2018‐0979EU Horizon 2020 Research and Innovation Programme. Grant Number: 64323
First Experimental Evidence of a Beam-Beam Long-Range Compensation Using Wires in the Large Hadron Collider
In high intensity and high energy colliders such as the CERN Large Hadron
Collider and its future High Luminosity upgrade, interactions between the two
beams around the different Interaction Points impose machine performance
limitations. In fact, their effect reduces the beam lifetime and therefore the
collider's luminosity reach. Those interactions are called Beam-Beam Long-Range
interactions and a possible mitigation of their effect using DC wires was
proposed for the first time in the early 2000's. This solution is currently
being studied as an option for enhancing the HL-LHC performance. In 2017 and
2018, four demonstrators of wire compensators have been installed in the LHC. A
two-year long experimental campaign followed in order to validate the
possibility to mitigate the BBLR interactions in the LHC. During this campaign,
a proof-of-concept was completed and motivated an additional set of
experiments, successfully demonstrating the mitigation of BBLR interactions
effects in beam conditions compatible with the operational configuration. This
paper reports in detail the preparation of the experimental campaign, the
obtained results and draws some perspectives for the future.Comment: Draft for a later PRAB submissio
Design, construction, and beam tests of a rotatable collimator prototype for high-intensity and high-energy hadron accelerators
A rotatable-jaw collimator design was conceived as a solution to recover from catastrophic beam impacts which would damage a collimator at the Large Hadron Collider (LHC) or its High-Luminosity upgrade (HL-LHC). One such rotatable collimator prototype was designed and built at SLAC and delivered to CERN for tests with LHC-type circulating beams in the Super Proton Synchrotron (SPS). This was followed by destructive tests at the dedicated High Radiation to Materials (HiRadMat) facility to validate the design and rotation functionality. An overview of the collimator design, together with results from tests without and with beam are presented
- …