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Abstract. Two new absorbing materials were developed as collimator inserts to fulfil the
requirements of HL-LHC higher brightness beams: molybdenum-carbide graphite (MoGr) and
copper-diamond (CuCD). These materials were tested under intense beam impacts at CERN
HiRadMat facility in 2015, when full jaw prototypes were irradiated. Additional tests in
HiRadMat were performed in 2017 on another series of material samples, including also
improved grades of MoGr and CuCD, and different coating solutions. This paper summarizes
the main results of the two experiments, with a main focus on the behaviour of the novel
composite blocks, the metallic housing, as well as the cooling circuit. The experimental
campaign confirmed the final choice for the materials and the design solutions for HL-LHC
collimators, and constituted a unique chance of benchmarking numerical models. In particular,
the tests validated the selection of MoGr for primary and secondary collimators, and CuCD as
a valid solution for robust tertiary collimators.

1. Introduction
In the next years, the HL-LHC upgrade [1] will increase the energy stored in LHC circulating beams
by almost a factor of two (from 360 to 680 MJ). In the case of future proposed accelerators such as the
FCC [2], the In recent years, a novel design was proposed for LHC collimators [1], to cope with the
requirements imposed by the High-Luminosity upgrade of the LHC (HL LHC). Such requirements
encompass material robustness under higher beam stored energy (from 360 MJ to 680 MJ), as well as
a reduction in impedance [2]. A new collimator jaw (see Figure 1) was developed to ease
manufacturing and assembling, compared to the previous configuration [3]. The new design features a
common platform for the three halo cleaning families (primary, secondary and tertiary collimators),
which enables using different absorbing materials with the same supporting structure [4].

Primary collimator jaws make use of molybdenum carbide graphite (MoGr) [5], offering a
significant reduction of impedance compared to the 2D carbon fibre reinforced carbon (CFC) used so
far. In secondary collimators, where the thermal loads are less concentrated, a 5 µm molybdenum
coating is applied on MoGr to further reduce the impedance. Finally, copper diamond (CuCD) [6] is
proposed as a more robust solution compared to the tungsten heavy alloy currently used in tertiary
collimators.
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Figure 1. HL-LHC collimator jaw section view.

2. HiRadMat experiments
In order to validate the mechanical design and the material choices, two experiments were performed
in 2015 and 2017 at CERN HiRadMat facility [7]. During the first experiment, named “Jaws” [8], two
full scale HL LHC collimator jaws in MoGr and CuCD were built, largely instrumented and installed
in a vacuum chamber together with a standard LHC collimator in CFC (Figure 2). The test aimed at
assessing the thermomechanical response under beam impact of the key elements such as absorbing
blocks, taperings, BPMs and cooling circuit.

Figure 2. Configuration of Jaws, with,
from top to bottom, CFC, MoGr and
CuCD jaws.

Figure 3. Configuration of Multimat.

The second experiment, “Multimat” [9], featured several material samples, also including MoGr
and CuCD, with the goal of determining the material models to adopt in numerical simulations (see
Figure 3). Moreover, in Multimat, profiting of the sample geometry, it was possible to reach dynamic
strains on the most loaded specimens significantly higher than what expected in the HL-LHC
accidental scenarios (Table 1). Additionally, Multimat aimed at evaluating, under proton impacts, the
adherence of coatings made of molybdenum, copper and titanium nitride, applied to MoGr, CFC and
isotropic graphite. The parameters of the two experiments, together with those expected in the
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HL-LHC accidental scenarios, i.e. beam injection error (BIE) and asynchronous beam dump (ABD)
[10], are reported in Table 1 where ntot is the pulse intensity, σ is the beam transverse dimension, η is
the impact parameter, ε is the impact depth, Ed,max is the energy density peak, simulated with FLUKA
[11], and εR,max is the maximum dynamic strain evaluated at the most loaded cross section of the target
[12]. In the two experiments, the energy density peaks, which are related to local damages in the
material, expected during the HL-LHC accidents, were exceeded by transversally squeezing the proton
beam.

Table 1: Jaws And Multimat Testing Parameters and HL LHC Accidental Scenarios. The Required
Energy Density of The ABD Scenario is Mimicked by Compensating Lower SPS Energy With Higher
Intensity.

Material
ntot

(p)

σ min-max

(mm)

η min-max

(mm)

Ed,max

(kJ·cm-3)

εR,max

(µm·m-1)

Jaws

MoGr 3.80×1013 0.35÷0.61 0.18÷3.05 5.66 2550

CuCD 1.73×1013 0.35÷0.61 0.18÷3.05 13.8 2590

CFC 3.79×1013 0.35÷0.61 0.18÷5.00 3.16 910

Multimat

MoGr 4.03×1013 0.27÷0.75 0.15÷6.00 7.68 6050

CuCD 2.89×1012 0.49÷1.91 1.00÷5.00 2.71 2650

CFC 3.72×1013 0.30÷0.72 0.15÷6.00 3.76 3090

Graphite 4.04×1013 0.29÷0.72 0.15÷6.00 4.15 1320

HL-LHC BIE
MoGr 6.62×1013 0.61 0÷3.05 6.09 2870

CFC 6.62×1013 0.61 0÷3.05 2.55 1140

HL-LHC ABD CuCD 6.07×1012 0.61 0÷3.05 4.81 850

3. Absorbing blocks
Absorbing blocks were subjected to visual inspection, metrology, 3D topography and computed
tomography.

3.1. Molybdenum-Graphite
The MoGr jaw was impacted with six pulses at the maximum intensity available in the facility,
reaching an energy density equivalent to that of the HL LHC BIE accident scenario (Table 1). Detailed
visual inspections show only minor traces of the beam passage on the block active face (see Figure 4).
The mark was produced by a grazing impact (0.5 σ impact parameter) with maximum energy density
achieved on the material (σ = 0.35 mm, see Table 1). Any increase in the beam sigma, impact
parameter, or decrease in the intensity, did not produce traces on the block surface.
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Figure 4. Visual inspection of most loaded MoGr block (#2). Red arrow indicates beam-
induced mark. The other visible horizontal signs are optical fibre grooves and the glue used
to fix them. Strain gauges are also visible.

Flatness measurements and 3D topography determined that the height of the mark shown in
Figure 4, is in the order of 15 µm, with the block flatness error (including also the manufacturing
tolerance) that remains below the specification of 40 µm (see Figure 5). Microtomography excluded
the presence of internal cracks in the blocks.

Figure 5. Flatness measurement of MoGr block #2.

3.2. Copper-Diamond
The CuCD jaw was submitted to ten impacts entailing energy densities equal or higher than the design
accidental scenario (HL-LHC ABD). The Jaws highest intensity pulse surpassed in intensity the
HL-LHC ABD by a factor of 3, and generated a scratch with local material fissuring, melting and
detaching (see Figure 6). However, the metrology measurements showed that the functionality of the
collimator, in case of such damage, can still be guaranteed by shifting the collimator assembly by
±10 mm, exposing a pristine flat region of the jaw to the beam (see Figure 7). This is possible thanks
to the so called 5th axis, which can be activated in a collimator in case of accidental impact during
operation. Comparing this result with those observed on a standard tertiary collimator during
HiRadMat tests in 2013 [13], a factor ~14 of increase in robustness, when moving from Inermet180 to
CuCD, could be estimated [8].
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Figure 6. Visual inspection of CuCD jaw. Effects of the grazing impacts are indicated
by the blue arrows.

Figure 7. Flatness measurement of CuCD block #5, showing the area affected by the
most severe impact, a factor of 3 above the ABD accident scenario.

3.3. Coating on MoGr
Coating adherence was investigated in Multimat. Results (see Figure 8) show that, in spite of the
energy density peak higher than what expected in the BIE accident scenario, only minor scratches 
were produced on the thin films. The largest scratch occurs on copper coating, and is 1.9 mm wide. 
Molybdenum behaves better (1.1 mm scratch), thanks to its higher melting point. For all the tested 
solutions, the limited scratch width can be compensated, in case of impact, by shifting the collimator 
jaw with the 5th axis, exposing a pristine coated surface to the beam. 
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Figure 8. Visual inspection of Multimat targets: Cu-coated graphite (top), Cu-coated
MoGr (center) and Mo-coated MoGr (bottom).

4. Taperings
In Jaws, MoGr taperings were installed in the MoGr and CuCD jaws, while Glidcop was used for the
CFC jaw. The downstream Glidcop tapering locally melted (see Figure 9), with a produced crater of
~4×7 mm2 size, as a consequence of an impact with intensity 3.8×1013 p and depth 5 mm. No damage
was observed in the taperings made of MoGr (Figure 10), which has now become the baseline choice.

Figure 9. Jaws downstream taperings in Glidcop. Figure 10. Jaws downstream taperings in MoGr.

5. Housing and cooling circuit
The jaw housings were measured before and after the experiment, to determine the variation in
flatness provoked by the beam impact. The residual deflection was equal to 80 µm in the MoGr jaw
and 50 µm in the CuCD jaw. This is a result of the multiple impacts at or above the design scenario.
Assuming a linear contribution of each pulse above thresholds, the jaw deflection provoked by one
pulse at nominal design intensity is estimated in 5 to 15 µm [8].

To guarantee a good heat transfer, the jaw cooling pipes are brazed to the Glidcop housing.
Ultrasonic tests (UT) were performed to demonstrate that the proton impacts during Jaws had
provoked no damage at the brazed interface (see Figure 11): the dark areas indicate optimal contact
between housing and cooling pipes). After the experiment, the cooling pipes of the circuit were tested
under internal water pressure of 10 bar. No leaks were observed.
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Figure 11. UT of MoGr (a) and CuCD (b) brazed interfaces, over different lengths:
200-550 mm (left) and 490-840 mm (right).

6. Beam position monitors (BPMs)
The performance of BPM installed in the Jaws taperings was measured before and after the
experiment. The only BPM which failed during the test was the one installed in the Glidcop
downstream tapering (Error! Reference source not found. and discussion in the previous
“Taperings” chapter), as a consequence of the high deposited energy induced by the metallic
surroundings. To further reduce energy absorption, in the final design, on top of using MoGr for the
taperings, the BPM material was changed from stainless steel to titanium.

Table 2: Capacitive measurements on Jaws BPMs.

BPM location
Tmax

(°C)
Aspect

Impulse response change
before and after experiment

(%)

MoGr upstream 25 ok 1.6

MoGr downstream 400 ok 0

CuCD upstream 25 small black dot on one side 0.2

CuCD downstream 50 ok 0.1

CFC upstream 25 slight trace 0.6

CFC downstream 900 broken 13.7

7. Conclusions
An extensive characterization of the new collimator designs for the HL-LHC upgrade was carried out
at CERN. The mechanical response under beam impacts of key elements, such as absorbing blocks,
taperings, BPMs, housing, cooling pipes and brazed interfaces, was assessed in two experiments (Jaws
and Multimat) at HiRadMat. The outputs of the experiments led to the validation, from a mechanical
standpoint, of the final design choices. Given the limitations in terms of maximum intensity available
at HiRadMat, the equivalence with the HL-LHC accidental scenarios on the full-scale equipment was
mainly achieved by equalling or exceeding the peak energy density on the absorbing materials. The
authors consider important to repeat similar experiments when higher-intensity LIU beams will
possibly be available at HiRadMat.
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