8 research outputs found

    CAR-T Cell Therapy: A Door Is Open to Find Innumerable Possibilities of Treatments for Cancer Patients

    Get PDF
    Seven years ago a chronic lymphocytic leukemia patient was for the first time successfully treated with chimeric antigen receptor (CAR)-modified T cells (CAR-T cells) to target CD19 overexpression in tumor cells. This was the beginning of the development of a new type of immunotherapy treatment in cancer patients. Since then, identification of novel antigens expressed in tumor cells and optimization of both CAR constructs and protocols of administration have opened up new avenues for the successful treatment of other hematological malignancies. However, research still continues to avoid some problems such as toxicities associated with the treatment and to find strategies to avoid tumor cell immune evasion mechanisms. On the other hand, for solid tumors, CAR-T therapy results are still in an early phase. In contrast to hematological malignancies, the complex tumor heterogeneity of solid tumors has led to the research of novel and challenging strategies to improve CAR-T cell activity. Here, we will review the main clinical results obtained with CAR-T cells in hematological malignancies, specifically focusing on CAR-T-19 and CAR-T against B-cell maturation antigen (CAR-T-BCMA). Moreover, we will mention the main problems that decrease CAR-T cell activity in solid tumors and the strategies to overcome them. Finally, we will present some of the first clinical results obtained for solid tumors

    Development of a Novel Anti-CD19 Chimeric Antigen Receptor : A Paradigm for an Affordable CAR T Cell Production at Academic Institutions

    Get PDF
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc Il2rd/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients

    Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions

    Get PDF
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Receptor Antigénico Quimérico en linfocitos T para el tratamiento del cáncer de mama HER2+

    No full text
    Programa de Doctorat en Biotecnologia / Tesi realitzada a l'Institut d’Investigacions Biomèdiques August Pi i Suñer (IDIBAPS)[spa] El cáncer de mama es el tumor más frecuentemente diagnosticado en mujeres y entre sus diversos subtipos, en esta tesis, nos centraremos particularmente en el cáncer de mama HER2+. Esta patología se caracteriza por la sobreexpresión del receptor 2 del factor de crecimiento epidérmico humano (HER2/ErbB2/neu-2, por sus siglas en inglés) que conduce a un comportamiento más agresivo de la enfermedad y un pronóstico menos favorable. Aunque las terapias dirigidas contra HER2 han mejorado la supervivencia de las pacientes con cáncer de mama HER2+, desafortunadamente hoy en día sigue habiendo pacientes que desarrollan resistencias o experimentan recaídas después de recibir estos tratamientos. En los últimos años, la inmunoterapia ha revolucionado el campo del tratamiento del cáncer, convirtiéndose así en una poderosa herramienta para combatir esta enfermedad. En concreto, la terapia CAR, basada en la modificación genética de los linfocitos T para que expresen en su membrana un receptor antigénico quimérico (Chimeric Antigen Receptor, CARs por sus siglas en inglés). Estos linfocitos CART modificados genéticamente deberán circular desde la sangre hasta el tumor, donde reconocerán el antígeno diana y desencadenarán una respuesta inmunitaria robusta contra las células tumorales para finalmente eliminarlas. Esta terapia se ha posicionado como nuevo tratamiento con grandes resultados en neoplasias hematológicas, lamentablemente los resultados en tumores sólidos han sido menos alentadores debido a limitaciones y toxicidades asociadas, exigiendo una correcta optimización del diseño del CAR para poder obtener el éxito terapéutico. Estudio 1: En el primer estudio de esta investigación, nos enfocaremos en la optimización de un CAR diseñado específicamente para la diana terapéutica HER2 con el propósito de tratar el cáncer de mama HER2+ metastático. Durante el diseño del CAR-HER2, la principal preocupación radica en la posible toxicidad que los linfocitos CART puedan inducir en tejidos sanos que expresen densidades bajas del antígeno diana. Nuestra hipótesis se basa en que la modificación de los linfocitos T mediante la incorporación de un CAR de baja afinidad podría ofrecer una terapia segura para pacientes que padecen cáncer de mama HER2+. Inicialmente se eligió un scFv contra HER2 de baja afinidad con el objetivo de poder diferenciar entre densidades de expresión de antígeno y focalizar la terapia en las células tumorales. A partir de allí, se optimizaron los dominios transmembrana (TMD) e intracelular (ICD) para obtener la combinación que proporcionara el mayor efecto antitumoral y persistencia a largo plazo. Observamos que la combinación del TMD CD8α con el ICD 41BB confirió el mejor efecto antitumoral con persistencia a largo plazo. Una vez elegido el mejor candidato, era esencial contrastar la seguridad de nuestro CAR-HER2 de baja afinidad con un CAR-HER2 de alta afinidad llevado a ensayos preclínicos. Demostramos tanto en los ensayos in vitro como en modelos preclínicos in vivo que los linfocitos CART-HER2 de baja afinidad no se activaba en presencia de densidades bajas de antígeno, en cambio sí lo hacían los linfocitos CART-HER2 de alta afinidad. Se concluyó que el uso de linfocitos CART-HER2 de baja afinidad que podría ser una opción terapéutica segura para pacientes con tumores de cáncer de mama HER2+ metastático que carecen de alternativas de tratamiento. 4 Estudio 2: No obstante, es importante destacar que, a largo plazo, debido a la alta heterogeneidad presente en los tumores de cáncer de mama HER2+, surge la cuestión acerca de si la disminución de la afinidad del CAR podría facilitar el escape tumoral debido al sobrecrecimiento de células tumorales HER2 negativas o de baja expresión. Este nuevo enfoque podría impedir la capacidad de los linfocitos CART de reconocer y eliminar las células tumorales que no expresen niveles elevados del antígeno. Este hecho enfatiza la urgente necesidad de explorar nuevas oportunidades terapéuticas, como la posible combinación de la terapia CART con genes suicidas. Así, en el segundo estudio, proponemos la incorporación de un transgén que codifica para un gen suicida con efecto colateral en combinación con la secuencia del CAR con el propósito de potenciar el efecto antitumoral de la terapia CAR. Dicha incorporación tiene 3 objetivos principales: 1) Eliminar los linfocitos T disfuncionales para poder crear un espacio homeostático para una posible segunda infusión; 2) Eliminar las células tumorales que expresen densidades bajas o negativas del antígeno; 3) Eliminar las posibles células inmunosupresoras presentes en el microambiente tumoral. Durante los ensayos in vitro, caracterizamos el transgén y observamos la inducción de la muerte celular en los linfocitos CART-transgén+, así como la sensibilidad de diversas líneas tumorales al efecto colateral. Sin embargo, en los ensayos in vivo, solo se observó un efecto antitumoral cuando las células tumorales incorporaban el transgén, y no cuando se expresaba en los linfocitos T que estaban infiltrados en el tumor. Aunque esta estrategia podría ofrecer un enfoque terapéutico prometedor a considerar en el futuro, se requerirán futuros experimentos para una correcta optimización del efecto antitumoral mediado por el efecto colateral del transgén en modelos preclínicos

    Receptor Antigénico Quimérico en linfocitos T para el tratamiento del cáncer de mama HER2+

    Full text link
    [spa] El cáncer de mama es el tumor más frecuentemente diagnosticado en mujeres y entre sus diversos subtipos, en esta tesis, nos centraremos particularmente en el cáncer de mama HER2+. Esta patología se caracteriza por la sobreexpresión del receptor 2 del factor de crecimiento epidérmico humano (HER2/ErbB2/neu-2, por sus siglas en inglés) que conduce a un comportamiento más agresivo de la enfermedad y un pronóstico menos favorable. Aunque las terapias dirigidas contra HER2 han mejorado la supervivencia de las pacientes con cáncer de mama HER2+, desafortunadamente hoy en día sigue habiendo pacientes que desarrollan resistencias o experimentan recaídas después de recibir estos tratamientos. En los últimos años, la inmunoterapia ha revolucionado el campo del tratamiento del cáncer, convirtiéndose así en una poderosa herramienta para combatir esta enfermedad. En concreto, la terapia CAR, basada en la modificación genética de los linfocitos T para que expresen en su membrana un receptor antigénico quimérico (Chimeric Antigen Receptor, CARs por sus siglas en inglés). Estos linfocitos CART modificados genéticamente deberán circular desde la sangre hasta el tumor, donde reconocerán el antígeno diana y desencadenarán una respuesta inmunitaria robusta contra las células tumorales para finalmente eliminarlas. Esta terapia se ha posicionado como nuevo tratamiento con grandes resultados en neoplasias hematológicas, lamentablemente los resultados en tumores sólidos han sido menos alentadores debido a limitaciones y toxicidades asociadas, exigiendo una correcta optimización del diseño del CAR para poder obtener el éxito terapéutico. Estudio 1: En el primer estudio de esta investigación, nos enfocaremos en la optimización de un CAR diseñado específicamente para la diana terapéutica HER2 con el propósito de tratar el cáncer de mama HER2+ metastático. Durante el diseño del CAR-HER2, la principal preocupación radica en la posible toxicidad que los linfocitos CART puedan inducir en tejidos sanos que expresen densidades bajas del antígeno diana. Nuestra hipótesis se basa en que la modificación de los linfocitos T mediante la incorporación de un CAR de baja afinidad podría ofrecer una terapia segura para pacientes que padecen cáncer de mama HER2+. Inicialmente se eligió un scFv contra HER2 de baja afinidad con el objetivo de poder diferenciar entre densidades de expresión de antígeno y focalizar la terapia en las células tumorales. A partir de allí, se optimizaron los dominios transmembrana (TMD) e intracelular (ICD) para obtener la combinación que proporcionara el mayor efecto antitumoral y persistencia a largo plazo. Observamos que la combinación del TMD CD8α con el ICD 41BB confirió el mejor efecto antitumoral con persistencia a largo plazo. Una vez elegido el mejor candidato, era esencial contrastar la seguridad de nuestro CAR-HER2 de baja afinidad con un CAR-HER2 de alta afinidad llevado a ensayos preclínicos. Demostramos tanto en los ensayos in vitro como en modelos preclínicos in vivo que los linfocitos CART-HER2 de baja afinidad no se activaba en presencia de densidades bajas de antígeno, en cambio sí lo hacían los linfocitos CART-HER2 de alta afinidad. Se concluyó que el uso de linfocitos CART-HER2 de baja afinidad que podría ser una opción terapéutica segura para pacientes con tumores de cáncer de mama HER2+ metastático que carecen de alternativas de tratamiento. 4 Estudio 2: No obstante, es importante destacar que, a largo plazo, debido a la alta heterogeneidad presente en los tumores de cáncer de mama HER2+, surge la cuestión acerca de si la disminución de la afinidad del CAR podría facilitar el escape tumoral debido al sobrecrecimiento de células tumorales HER2 negativas o de baja expresión. Este nuevo enfoque podría impedir la capacidad de los linfocitos CART de reconocer y eliminar las células tumorales que no expresen niveles elevados del antígeno. Este hecho enfatiza la urgente necesidad de explorar nuevas oportunidades terapéuticas, como la posible combinación de la terapia CART con genes suicidas. Así, en el segundo estudio, proponemos la incorporación de un transgén que codifica para un gen suicida con efecto colateral en combinación con la secuencia del CAR con el propósito de potenciar el efecto antitumoral de la terapia CAR. Dicha incorporación tiene 3 objetivos principales: 1) Eliminar los linfocitos T disfuncionales para poder crear un espacio homeostático para una posible segunda infusión; 2) Eliminar las células tumorales que expresen densidades bajas o negativas del antígeno; 3) Eliminar las posibles células inmunosupresoras presentes en el microambiente tumoral. Durante los ensayos in vitro, caracterizamos el transgén y observamos la inducción de la muerte celular en los linfocitos CART-transgén+, así como la sensibilidad de diversas líneas tumorales al efecto colateral. Sin embargo, en los ensayos in vivo, solo se observó un efecto antitumoral cuando las células tumorales incorporaban el transgén, y no cuando se expresaba en los linfocitos T que estaban infiltrados en el tumor. Aunque esta estrategia podría ofrecer un enfoque terapéutico prometedor a considerar en el futuro, se requerirán futuros experimentos para una correcta optimización del efecto antitumoral mediado por el efecto colateral del transgén en modelos preclínicos

    Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers

    Get PDF
    Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CART19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti- CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies

    Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions

    No full text
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients
    corecore