7 research outputs found

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    This is an article Open Access.The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation. © 2008 Elsevier Inc. All rights reserved.This work was funded by grants from the Guy's and St Thomas' Charitable Foundation and the BBSRC to AS, BMC2002-00355 CICYT to BA, BFU2005-0084-CICYT and CSIC to IVN, and XT-G03/203 ISCIII MSC to IVN and FG. IG was supported by a predoctoral fellowship from the Eusko Jaularitza.Peer Reviewe

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    AbstractThe otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation

    Biochemical and Biophysical Characterization of the Caveolin-2 Interaction with Membranes and Analysis of the Protein Structural Alteration by the Presence of Cholesterol

    Get PDF
    Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein–lipid interactions within caveolae

    Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons

    No full text
    Neurons that connect mechanosensory hair cell receptors to the central nervous system derive from the otic vesicle from where otic neuroblasts delaminate and form the cochleovestibular ganglion (CVG). Local signals interact to promote this process, which is autonomous and intrinsic to the otic vesicle. We have studied the expression and activity of insulin-like growth factor-1 (IGF-1) during the formation of the chick CVG, focusing attention on its role in neurogenesis. IGF-1 and its receptor (IGFR) were detected at the mRNA and protein levels in the otic epithelium and the CVG. The function of IGF-1 was explored in explants of otic vesicle by assessing the formation of the CVG in the presence of anti-IGF-1 antibodies or the receptor competitive antagonist JB1. Interference with IGF-1 activity inhibited CVG formation in growth factor-free media, revealing that endogenous IGF-1 activity is essential for ganglion generation. Analysis of cell proliferation cell death, and expression of the early neuronal antigens Tuj-1, Islet-1/2, and G4 indicated that IGF-1 was required for survival, proliferation, and differentiation of an actively expanding population of otic neuroblasts. IGF-1 blockade, however, did not affect NeuroD within the otic epithelium. Experiments carried out on isolated CVG showed that exogenous IGF-1 induced cell proliferation, neurite outgrowth, and G4 expression. These effects of IGF-1 were blocked by JB1. These findings suggest that IGF-1 is essential for neurogenesis by allowing the expansion of a transit-amplifying neuroblast population and its differentiation into postmitotic neurons. IGF-1 is one of the signals underlying autonomous development of the otic vesicle. © 2003 Elsevier Inc. All rights reserved.This work was supported in part by grants from the DGICYT and MCYT: PM99-0111, BMC2001-2132-C02-02 (to I.V.-N). BMC 2001-2132-C02-01 (to F.D.), and BMC2002-00355 (to F.G.). G.C. was supported by the Ministerio de Educacion y Ciencia, and I.G. by the Eusko Jaurlaritza. Islet-1/2, Tuj-1, 3A10, and BEN monoclonal antibodies were obtained from the Developmental Studies Hybridoma Bank under the auspices of the National Institute of Child Health and Human Development and maintained by the University of Iowa, Department of Biological Sciences (Iowa City, IA).Peer Reviewe

    Overexpression of the cytokine BAFF and autoimmunity risk

    No full text
    BACKGROUND: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.)

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore