37 research outputs found

    Gender-Dependent Survival of Allogeneic Trophoblast Stem Cells in Liver

    Get PDF
    In view of the well-known phenomenon of trophoblast immune privilege, trophoblast stem cells (TSCs) might be expected to be immune privileged, which could be of interest for cell or gene therapies. Yet in the ectopic sites tested so far, TSC transplants fail to show noticeable immune privilege and seem to lack physiological support. However, we show here that after portal venous injection, green fluorescent protein (GFP)-labeled TSCs survive for several months in the livers of allogeneic female but not male mice. Gonadectomy experiments revealed that this survival does not require the presence of ovarian hormones but does require the absence of testicular factors. By contrast, GFP-labeled allogeneic embryonic stem cells (ESCs) are reliably rejected; however, these same ESCs survive when mixed with unlabeled TSCs. The protective effect does not require immunological compatibility between ESCs and TSCs. Tumors were not observed in animals with either successfully engrafted TSCs or coinjected ESCs. We conclude that in a suitable hormonal context and location, ectopic TSCs can exhibit and confer immune privilege. These findings suggest applications in cell and gene therapy as well as a new model for studying trophoblast immunology and physiology

    Analysis of differentially expressed long non-coding RNAs in LPS-induced human HMC3 microglial cells

    Get PDF
    Abstract Background Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). Results We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. Conclusions These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors

    Reversal of hyperglycemia by insulin-secreting rat bone marrow- and blastocyst-derived hypoblast stem cell-like cells

    Get PDF
    β-cell replacement may efficiently cure type 1 diabetic (T1D) patients whose insulin-secreting β-cells have been selectively destroyed by autoantigen-reactive T cells. To generate insulin-secreting cells we used two cell sources: rat multipotent adult progenitor cells (rMAPC) and the highly similar rat extra-embryonic endoderm precursor (rXEN-P) cells isolated under rMAPC conditions from blastocysts (rHypoSC). rMAPC/rHypoSC were sequentially committed to definitive endoderm, pancreatic endoderm, and β-cell like cells. On day 21, 20% of rMAPC/rHypoSC progeny expressed Pdx1 and C-peptide. rMAPCr/HypoSC progeny secreted C-peptide under the stimulus of insulin agonist carbachol, and was inhibited by the L-type voltage-dependent calcium channel blocker nifedipine. When rMAPC or rHypoSC differentiated d21 progeny were grafted under the kidney capsule of streptozotocin-induced diabetic nude mice, hyperglycemia reversed after 4 weeks in 6/10 rMAPC- and 5/10 rHypoSC-transplanted mice. Hyperglycemia recurred within 24 hours of graft removal and the histological analysis of the retrieved grafts revealed presence of Pdx1-, Nkx6.1- and C-peptide-positive cells. The ability of both rMAPC and HypoSC to differentiate to functional β-cell like cells may serve to gain insight into signals that govern β-cell differentiation and aid in developing culture systems to commit other (pluripotent) stem cells to clinically useful β-cells for cell therapy of T1D

    Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    Get PDF
    BACKGROUND:The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. METHODOLOGY/PRINCIPAL FINDINGS:Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines ("XEN-P cell lines"), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. CONCLUSIONS/SIGNIFICANCE:Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation

    Biphasic Production of Anti-ApoB100 Autoantibodies in Obese Humans and Mice

    No full text
    Obesity is associated with autoimmunity, a phenomenon considered as harmful. Here we show that obese mice and humans produce IgG-type autoantibodies that specifically recognize apolipoprotein B-100 (ApoB100), its native epitope p210, and the synthetic p210 mimotope pB1. By contrast, antibodies against epitopes p45 and p240, which have been associated with atherosclerosis, were not detected in either the humans or mice. In a longitudinal analysis of high fat diet-fed mice, autoantibody production rose with increasing body weight, then decreased and plateaued at morbid obesity. Likewise, in a cross-sectional analysis of sera from 148 human volunteers spanning a wide BMI range and free of comorbidities, the immunoreactivity increased and then decreased with increasing BMI. Thus, the obesity-related ApoB100-specific natural autoantibodies characteristically showed the same epitope recognition, IgG-type, and biphasic serum levels in humans and mice. We previously reported that a pB1-based vaccine induces similar antibodies and can prevent obesity in mice. Therefore, our present results suggest that autoantibodies directed against native ApoB100 may mitigate obesity, and that the vaccination approach may be effective in humans

    Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines

    No full text
    Mouse blastocysts contain the committed precursors of the extraembryonic endoderm (ExEn), which express the key transcription factor Oct4, depend on LIF/LIF-like factor-driven Jak/Stat signaling, and initially exhibit lineage plasticity. Previously described rat blastocyst-derived ExEn precursor-like cell lines (XENP cells/HypoSCs) also show these features, but equivalent mouse blastocyst-derived cell lines are lacking. We now present mouse blastocyst-derived cell lines, named primitive XEN (pXEN) cells, which share these and additional characteristics with the XENP cells/HypoSCs, but not with previously known mouse blastocyst-derived XEN cell lines. Otherwise, pXEN cells are highly similar to XEN cells by morphology, lineage-intrinsic differentiation potential, and multi-gene expression profile, although the pXEN cell profile correlates better with the blastocyst stage. Finally, we show that pXEN cells easily convert into XEN-like cells but not vice versa. The findings indicate that (i) pXEN cells are more representative than XEN cells of the blastocyst stage; (ii) mouse pXEN, rather than XEN, cells are homologs of rat XENP cells/HypoSCs, which we propose to call rat pXEN cells. Keywords: Stem cells, Blastocyst, Mice, Rats, Extraembryonic endoder
    corecore