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Purine metabolites play critical roles in regulating early embryonic

development in mammals. The levels of cyclic AMP, cyclic GMP and

hypoxanthine regulate meiotic arrest of mouse oocytes in vivo, whilst

elevated levels of hypoxanthine, adenine, or inosine can disrupt the

first cleavage stages during embryonic development in vitro (Dien-

hart & Downs, 1996; Wigglesworth et al., 2013). The enzyme hy-

poxanthine phosphoribosyltransferase (HPRT) is an essential

component of the purine salvage pathway, involved in recycling hy-

poxanthine and guanine to provide substrates for the synthesis of

nucleic acids and key metabolites including second messengers. The

HPRT gene is located on the X chromosome and when mutated in

humans causes the debilitating neurological disorder Lesch–Nyhan

disease in males (Lesch & Nyhan, 1964). Here, we report that ab-

sence of HPRT disrupts early embryonic development leading to

impaired fertility in female Hprt knock‐out (KO) rats.

We previously described the generation of Hprt KO rats using

targeted rat DA embryonic stem cells (Meek et al., 2016). The Hprt

mutant rats lack exons 7 and 8 of the Hprt gene and do not express

HPRT protein. Although the Hprt KO rats appeared generally healthy,

they exhibited reduced levels of dopamine in the midbrain, in line

with previous observations made in Hprt KO mice and in human

Lesch–Nyhan patients (Meek et al., 2016). To examine the require-

ment for HPRT function during rat embryonic development we

crossed Hprt KO rats, but repeated matings failed to produce any

offspring (Figure 1a). Although fertilized 1‐cell embryos were re-

covered from KO × KO matings, only fragmented embryos were re-

covered at day E4.5, when wild‐type embryos would normally reach

the blastocyst stage (Figure 1b,c). Hprt KO males were fertile and

could produce normal sized litters typical of rats with a similar

DA/Sprague Dawley mixed genetic background (Figure 1a; Meek

et al., 2020). In contrast, Hprt KO female rats mated with wild‐type
males produced many fragmented embryos and <50% expanded

blastocysts at day E4.5, which corresponded with reduced litter sizes

at term (Figures 1b and 1e). Interestingly, male pups were re-

presented in these litters, albeit at slightly reduced numbers, in-

dicating that “rescue” did not rely on the contribution of an intact

Hprt allele from X‐chromosome‐bearing sperm (Figure 1a). In matings

with wild‐type males from a transgenic line carrying a Rex1‐EGFP
knock‐in reporter gene that is first expressed at the 4–8‐cell stage
(Meek et al., 2020), Rex1‐EGFP fluorescence was evident in almost all

fragmented embryos (Figure 1d,e). This confirmed that fertilization of

most HPRT‐deficient oocytes had taken place, and zygotic gene ac-

tivation had begun in the majority of the degenerating embryos.

The failure to recover intact blastocysts from crosses between

Hprt KO rats demonstrated that HPRT activity is essential for proper

progression through the initial cleavages of early embryonic
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development in the rat. This requirement for HPRT activity did not

exclusively depend upon expression of the Hprt gene in the early

embryo as development was rescued by fertilization with Y

chromosome‐bearing sperm lacking the intact Hprt gene. Indeed, Hprt

contribution from the paternal X chromosome within the female

embryo at the 2‐4 cell stage might be limited in any case if, as in the

mouse, this chromosome is partially inactivated before fertilization

and only becomes fully active in the early epiblast of the blastocyst.

Moreover, zygotic transcription in rats initiates around the 4‐cell
stage (Zernicka‐Goetz, 1994), possibly too late to alleviate disruption

of development observed at 2–4 cell stages observed in

HPRT‐deficient oocytes.
Normal embryo development of some KO oocytes after fertili-

zation with wild‐type sperm suggests that Hprt‐derived products

carried by either sperm or the seminal fluid can rescue the

HPRT‐deficient embryos. The retention of cytoplasmic bridges be-

tween developing spermatids allows equilibration of mRNA, protein,

and metabolites between maturing sperm, making post‐meiotic

spermatids phenotypically equivalent (Braun, Behringer, Peschon,

Brinster, & Palmiter, 1989). In this way, Hprt‐derived RNA, protein, or

HPRT‐dependent purine metabolites provided by any sperm could

rescue HPRT‐deficient embryos. Alternatively, metabolites or factors

in the seminal fluid or in sperm‐associated extracellular microsomes

could be provided in trans by Hprt‐expressing somatic support cells

of wild‐type males.

Rescue by wild‐type sperm was incomplete pointing to a sensi-

tized state in the HPRT‐deficient embryos, either due to variation in

the sensitivity of HPRT‐deficient embryos or the penetrance of res-

cue factors. The nature of the early HPRT‐deficient sensitized state

and the identity of the rescue factor(s) requires further investigation.

However, based on previous experiments in mouse embryos

(Dienhart & Downs, 1996; Wigglesworth et al., 2013), it is tempting

to speculate that imbalances in the levels of purines or derivative

metabolites contribute to a sensitized state that compromises early

embryonic development in the rat. HPRT‐deficient rat embryos may,

therefore, provide a new in vivo experimental system in which to

investigate how purine metabolism and the uterine environment in-

fluence early embryo development in mammals.
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F IGURE 1 Disruption of early embryonic development in hypoxanthine phosphoribosyltransferase (HPRT)‐deficient rat embryos.
(a) Numbers of genotypes and sex of offspring in litters generated by matings between Hprt heterozygous (HET) females and wild type (WT) or

Hprt knock‐out (KO) males. There was no statistically significant reduction in the number of KO animals or males in any of the crosses (t test),
although it was noticeable that fewer males were generally present in KO(f) ×WT(m) litters. Reduced numbers of offspring were obtained,
however, in litters produced by matings between KO females and WT males, compared with either HET females ×WT males (p < .05) or HET
females × KO males (p < .05). Repeated attempts to interbreed KO animals by co‐housing animals for up to 4 months produced no offspring (*).

Males designated (m), females (f) and instances where genotypes could not be determined (n.d.). (b) The mean numbers of total embryos (Et:
solid bars) and the sub‐set that had developed into blastocysts (BL: hatched bars) were counted in litters recovered at day E4.5 from timed
matings between different WT and Hprt mutant rats (means ± SD). The numbers in brackets refer to numbers of litters analyzed. Reduced

numbers of identifiable blastocysts were obtained in matings between KO females and WT males, and KO females and KO males (p < .05). The
dotted line shows the percentage of timed matings that generated no embryos. (c) Bright‐field images of typical embryos recovered at E4.5 from
matings between KO rats. Note all embryos were either fragmented or arrested during early cleavage, and none had developed into blastocysts.

(d) UV /bright‐field composite of E4.5 blastocyst embryos generated by mating a HET female with a WT male carrying the Rex1‐egfp knock‐in
reporter gene. The Rex1‐egfp transgene is expressed in all cells of the blastocysts. (e) UV /bright‐field composite images of E4.5 embryos
generated by mating a KO female with a WT male carrying the Rex1‐egfp knock‐in reporter. Only 3 of the embryos have developed into
blastocysts, whilst the remainder are fragmented. Scale bars represent 50 μM

MEEK ET AL. | 3

http://orcid.org/0000-0001-6613-0519


Wigglesworth, K., Lee, K.‐B., O'Brien, M. J., Peng, J., Matzuk, M. M., &

Eppig, J. J. (2013). Bidirectional communication between oocytes and

ovarian follicular somatic cells is required for meiotic arrest of

mammalian oocytes. Proceedings of the National Academy of Sciences of

the United States of America, 110, E3723–E3729.

Zernicka‐Goetz, M. (1994). Activation of embryonic genes during

preimplantation rat development. Molecular Reproduction and

Development, 38, 30–35.

How to cite this article: Meek S, Sutherland L, Wei J, et al.

Hypoxanthine phosphoribosyltransferase (HPRT)‐deficiency
is associated with impaired fertility in the female rat. Mol

Reprod Dev. 2020;1–4. https://doi.org/10.1002/mrd.23413

4 | MEEK ET AL.

https://doi.org/10.1002/mrd.23413



